硼掺杂碳化硅负载Pt催化剂的甲醇电催化氧化性能

Boron-doped silicon carbide supported Pt catalyst for methanol electrooxidation

  • 摘要: 以硼掺杂碳化硅(B0.1SiC)为载体,采用循环伏安法在B0.1SiC载体上电沉积Pt纳米粒子制备了Pt/B0.1SiC催化剂。利用X射线光电子能谱、X射线衍射、氮气吸附-脱附、扫描电镜及透射电镜等测试方法对催化剂的晶型、表面性质及形貌进行了表征。结果表明,硼原子掺杂进入SiC晶格并取代了Si 位点,使B0.1SiC载体的导电性增强;Pt纳米粒子均匀地分布在B0.1SiC载体上,平均粒径为2.7 nm。与相同条件下制备的Pt/SiC催化剂相比,Pt/B0.1SiC具有较大的电化学活性表面积、更高的甲醇催化氧化活性和稳定性。

     

    Abstract: Boron-doped silicon carbide (B0.1SiC) synthesized by the carbothermal reduction method was used as support to prepare Pt/B0.1SiC catalyst by cyclic voltammtric deposition of Pt nanoparticles. The crystal structure, surface property and morphology of the catalysts were studied with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy techniques and N2 adsorption-desorption experiment. It is shown that B atoms have been incorporated into the SiC lattice sites by substituting Si,which increases the electrical conductivity of SiC. Pt nanoparticles uniformly dispersed on the B0.1SiC support with an average size of 2.7 nm. The prepared Pt/B0.1SiC had a larger electrochemically active area and exhibited higher electrocatalytic activity and stability for methanol oxidation than the Pt/SiC synthesized by the same method. This shows that B-doped SiC is a promising support for preparing high-performance methanol oxidation electrocatalysts.

     

/

返回文章
返回