温海涛, 孔令学, 白进, 白宗庆, 吕冬梅, 李文. 高温气化条件下煤直接液化残渣中矿物质演化行为的研究[J]. 燃料化学学报(中英文), 2015, 43(03): 257-265.
引用本文: 温海涛, 孔令学, 白进, 白宗庆, 吕冬梅, 李文. 高温气化条件下煤直接液化残渣中矿物质演化行为的研究[J]. 燃料化学学报(中英文), 2015, 43(03): 257-265.
WEN Hai-tao, KONG Ling-xue, BAI Jin, BAI Zong-qing, LÜ Dong-mei, LI Wen. Transformation of minerals in direct coal liquefaction residue under gasification atmosphere at high temperatures[J]. Journal of Fuel Chemistry and Technology, 2015, 43(03): 257-265.
Citation: WEN Hai-tao, KONG Ling-xue, BAI Jin, BAI Zong-qing, LÜ Dong-mei, LI Wen. Transformation of minerals in direct coal liquefaction residue under gasification atmosphere at high temperatures[J]. Journal of Fuel Chemistry and Technology, 2015, 43(03): 257-265.

高温气化条件下煤直接液化残渣中矿物质演化行为的研究

Transformation of minerals in direct coal liquefaction residue under gasification atmosphere at high temperatures

  • 摘要: 利用XRD和FT-IR分析了高温(1 100~1 500 ℃)气化条件下液化残渣中矿物质的演变行为,并利用穆斯堡尔谱仪对残渣灰中的含铁相及铁的价态铁进行了定量分析。结果表明,煤直接液化残渣中的主要矿物质为石英、硫酸钙、紫铝铁矾、磁黄铁矿、高岭石和方解石。高温气化条件下残渣灰中主要矿物质为钙长石、钙黄长石、磁赤铁矿和磁铁矿。由于钙长石、钙黄长石等含钙化合物低温共熔作用,使得残渣灰具有较低的熔融温度。残渣灰中的含铁相主要为磁赤铁矿、磁铁矿、铁橄榄石和玻璃体,并且随温度的升高,玻璃体中的铁含量逐渐增加。同时,残渣灰中Fe2+/Fe3+出现先增加后降低再增加的变化趋势。当温度由1 100 ℃升高至1 200 ℃时,由于磁赤铁矿的还原,Fe2+/Fe3+由1.08升高至2.39;1 200 ℃以上Fe2+/Fe3+的变化不明显。另外,玻璃体中铁含量的增加是引起残渣灰液相含量随温度升高而增加的重要原因,铁含量高是导致残渣灰熔融温度低的主要原因。

     

    Abstract: The transformation behavior of mineral matters in direct coal liquefaction residue from Shenhua Corporation under gasification atmosphere at high temperatures was examined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Mssbauer spectroscopy was also applied to investigate the iron-bearing minerals and the valence distribution of iron in ash at different temperatures. The results show that the major minerals in coal liquefaction residue are quartz, calcium sulfate, millosevichite, pyrrhotite, kaolinite, and calcite. At high temperatures, they become anorthite, gehlenite, maghemite and magnetite. Due to the formation of anorthite, gehlenite eutectic, ash of coal liquefaction residue exhibits low fusion temperature. The iron-bearing minerals characterized in ash include maghemite, magnetite, fayalite, and the vitreous matter. The content of iron in vitreous matter increases with increasing temperature. Meanwhile, Fe2+/Fe3+ significantly increases from 1.08 to 2.39 as temperature increases from 1 100 to 1 200 ℃ for the reduction of maghemite, and it is not obviously changed above 1 200 ℃. Furthermore, the liquid phase in ash calculated by FactSage increases with temperature owing to the increase of iron in vitreous phase. In hence, high content of iron in ash from coal liquefaction residue is the major reason for its low ash fusion temperatures.

     

/

返回文章
返回