Abstract:
In this work, ZIF-8/Pt/SiO
2 catalysts were prepared by combining atomic layer deposition (ALD) and vapor phase conversion methods. First, Pt metal nanoparticles were deposited on SiO
2 nanowires by ALD. Then, ZnO was further deposited, also by ALD. Subsequently, the ZnO film was converted into ZIF-8 film by vapor phase crystallization to form a sandwich structure (ZIF-8/Pt/SiO
2). The microstructures of the catalysts were characterized by XRD, TEM, BET, IC-MS, XPS, and CO-DRIFT. It was shown that the Pt particles were highly dispersed on the SiO
2 nanowires before and after coating with ZIF-8, and the ZIF-8 film was coated continuously on the entire catalyst with high conformity. The performance of the catalyst was studied by using the semi-hydrogenation of 1-heptyne as a probe reaction. The ZIF-8 film induces an electron density increase in the Pt component, leading to an increase of the olefin selectivity from 14% to 70% in the 1-heptyne hydrogenation reaction. A reduced thickness of the ZIF-8 film increases the catalytic activity but does not affect the selectivity of 1-heptylene.