留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低共熔溶剂低温预处理杨木及三组分结构演变规律研究

皮奇峰 朱妤婷 吕微 廖玉河 王晨光 马隆龙

皮奇峰, 朱妤婷, 吕微, 廖玉河, 王晨光, 马隆龙. 低共熔溶剂低温预处理杨木及三组分结构演变规律研究[J]. 燃料化学学报, 2021, 49(12): 1791-1801. doi: 10.1016/S1872-5813(21)60086-5
引用本文: 皮奇峰, 朱妤婷, 吕微, 廖玉河, 王晨光, 马隆龙. 低共熔溶剂低温预处理杨木及三组分结构演变规律研究[J]. 燃料化学学报, 2021, 49(12): 1791-1801. doi: 10.1016/S1872-5813(21)60086-5
PI Qi-feng, ZHU Yu-ting, LÜ Wei, LIAO Yu-he, WANG Chen-guang, MA Long-long. Low temperature pretreatment of poplar using deep eutectic solvent and the structural evolution of three components of poplar[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1791-1801. doi: 10.1016/S1872-5813(21)60086-5
Citation: PI Qi-feng, ZHU Yu-ting, LÜ Wei, LIAO Yu-he, WANG Chen-guang, MA Long-long. Low temperature pretreatment of poplar using deep eutectic solvent and the structural evolution of three components of poplar[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1791-1801. doi: 10.1016/S1872-5813(21)60086-5

低共熔溶剂低温预处理杨木及三组分结构演变规律研究

doi: 10.1016/S1872-5813(21)60086-5
基金项目: 国家重点研发计划(2018YFB1501504)和广东省重点领域研发计划(2020B1111570001)资助
详细信息
    作者简介:

    皮奇峰:Piqf@ms.giec.ac.cn

    通讯作者:

    E-mail:wangcg@ms.giec.ac.cn

  • 中图分类号: TK6

Low temperature pretreatment of poplar using deep eutectic solvent and the structural evolution of three components of poplar

Funds: The project was supported by National Key R & D Program of China (2018YFB11504) and R & D Plan of Key Fields in Guangdong Province (2020B1111570001)
  • 摘要: 本研究考察了不同 ChCl/羧酸、氢键供受体比例,处理温度和时间对杨木木质素脱除效果的影响;并采用XRD、FT-IR、GPC、HSQC表征手段对固体残渣和提取木质素进行结构表征,研究木质纤维素三组分的结构演变规律。结果表明,低温下(90 ℃),ChCl/FA木质素脱除率高于90%,木质素提取率和纯度高达63%和90%。纤维素保留率 > 98%,纤维素晶型不变(Iβ型),固体残渣结晶度高达70%。提取木质素平均相对分子质量为1400,β−O−4保留率高达71%,占所有连接键的84.8%,是制备单酚的理想原料。
  • FIG. 1144.  FIG. 1144.

    FIG. 1144.  FIG. 1144.

    图  1  DES预处理杨木提取木质素流程图

    Figure  1  Flow chart of DES pretreatment of poplar wood to extract lignin

    图  2  ChCl/羧酸组合及ChCl:FA比例对对杨木预处理的作用

    Figure  2  Effects of different DES combinations and molar ratios of ChCl to FA on poplar pretreatment

    reaction conditions: 0.5 g poplar wood powder, 10 g DES (HBA:ChCl); (a) molar ratio of ChCl to HBD is 1∶1, 90 ℃, 8 h; (b) the molar ratio of ChCl to HBD is 1:2, 90 ℃, 8 h

    图  3  低共熔溶剂分子结构示意图

    Figure  3  Molecular structure of deep eutectic solvent

    图  4  反应温度和时间对杨木预处理的作用

    Figure  4  Effects of reaction temperature and time on the pretreatment of poplar wood

    reaction conditions: 0.5 g poplar wood powder, 10 g DES (HBA:ChCl); (a) : molar ratio of ChCl to FA is 1:2, 60−150 ℃, 8 h; (b): molar ratio of ChCl to FA is 1∶2, 90 ℃, 4−24 h

    图  5  ChCl/FA分离三组分的示意图

    Figure  5  Schematic diagram of ChCl/FA separation of three components

    图  6  杨木和固体残渣的SEM照片

    Figure  6  SEM images of poplar wood and solid residue (a), (d) = poplar wood powder; (b), (e) = solid residue after FA treatment; (c), (f) = solid residue after ChCl/FA (1∶2) treatmen

    图  7  ChCl/羧酸预处理杨木得到的固体残渣的FT-IR(a),(c)和XRD谱图(b),(d)

    Figure  7  FT-IR spectra (a), (c) and XRD patterns (b), (d) of the solid residue obtained by ChCl/carboxylic acid pretreatment of poplar wood

    图  8  ChCl∶FA比例、反应温度和时间对固体残渣化学结构的影响

    Figure  8  Effects of molar ratios of ChCl∶FA, reaction temperature and time on the chemical structure of the solid residue (a), (c), (e): FT-IR spectra; (b), (d), (f): XRD patterns

    图  9  ChCl/羧酸和ChCl/FA物质的量比对提取木质素结构的影响

    Figure  9  Effects of the ChCl/carboxylic acid and molar ratio of ChCl∶FA on the structure of the extracted lignin (a), (b): FT-IR spectra

    图  10  预处理温度和时间对提取木质素化学结构(a),(b)FT–IR谱图的影响

    Figure  10  Effects of pretreatment temperature and time on the chemical structure of extracted lignin (a), (b) FT–IR diagram

    图  11  MWL = 杨木磨木木质素(a), (b)和DESL = DES提取木质素(c), (d) HSQC NMR谱图

    Figure  11  HSQC NMR spectra of poplar milled wood lignin=MWL (a), (b) and DES extracted lignin=DESL (c), (d) (a), (c): side chain region; (b), (d): aromatic ring region

    表  1  不同温度和处理时间下木质素的GPC分析

    Table  1  GPC analysis of lignin extracted at different temperatures and treatment times

    t/℃t/hMnMwD = Mw/Mn
    90895414001.46
    120899113521.48
    150887310061.37
    901270210391.48
    90166557501.16
    90245808651.49
    下载: 导出CSV

    表  2  木质素中的主要连接键及结构单元

    Table  2  Main interlinkages and units in lignin

    Connection keyMWLDESL
    100Ar% 100Ar%
    β–O–4 (A) 43.3 77.6 18 48
    β–O–4 (A′) 0.1 0.3 12.6 34
    β–O–4 (A′′) 0 0 1 2.8
    β–O–4 in total 43.4 77.9 30.6 84.8
    β–β 8.6 15.4 2.9 7.7
    β–5 3.7 6.7 2.8 7.5
    Total 55.8 100 37.1 100
    G/S/PB 43∶47∶10 39∶53∶8
    下载: 导出CSV
  • [1] SATLEWAL A, AGRAWAL R, BHAGIA S, SANGORO J, RAGAUSKAS A J. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities[J]. Biotechnol Adv,2018,36(8):2032−2050. doi: 10.1016/j.biotechadv.2018.08.009
    [2] PU Y Q, JIANG N, RAGAUSKAS A J. Ionic liquid as a green solvent for lignin[J]. J Wood Chem Technol,2007,27(1):23−33. doi: 10.1080/02773810701282330
    [3] 王东玲, 王文锦, 彭梓芳, 徐莹, 刘建国, 王海永, 王晨光, 张琦, 马隆龙. 醇溶剂提取松木木质素及其结构表征[J]. 化工学报,2020,71(8):3761−3769.

    WANG Dong-ling, WANG Wen-Jin, PENG Zi-fang, XU Ying, LIU Jian-guo, Wang Hai-yong, WANG Chen-guang, ZHANG Qi, MA Long-long. Structure characterization of pine lignin extracted by different alcohol solvents[J]. CIESC J,2020,71(8):3761−3769.
    [4] 李佳慧, 胡嘉, 赵荣祥, 乔海燕, 李秀萍. 氯化胆碱 /草酸型低共熔溶剂氧化脱除模拟油硫化物[J]. 燃料化学学报,2014,42(7):870−876.

    LI Jia-hui, HU Jia, ZHAO Rong-xiang, QIAO Hai-yan, LI Xiu-ping. Oxidative desulfurization of model oil with choline chloride /oxalic acid as a eutectic solvent[J]. J Fuel Chem Technol,2014,42(7):870−876.
    [5] ABBOTT A P, CAPPER G, DAVIES D L, RASHEED R K, TAMBYRAJAH V. Novel solvent properties of choline chloride/urea mixtures[J]. Chem Commun,2003,(1):70−71. doi: 10.1039/b210714g
    [6] LIU Y Z, CHEN W S, XIA Q, GUO B T, WANG Q W, LIU S X, LIU Y X, LI J, YU H P. Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent[J]. ChemSusChem,2017,10(8):1692−1700. doi: 10.1002/cssc.201601795
    [7] CHEN Z, RAGAUSKAS A, WAN C X. Lignin extraction and upgrading using deep eutectic solvents[J]. Ind Crops Prod,2020,147:1−8.
    [8] PROCENTESE A, JOHNSON E, ORR V, CAMPANILE A G, WOOD J A, MARZOCCHELLA A, REHMANN L. Deep eutectic solvent pretreatment and subsequent saccharification of corncob[J]. Bioresour Technol,2015,192:31−36. doi: 10.1016/j.biortech.2015.05.053
    [9] LOU R, MA R S, LIN K T, AHAMED A, ZHANG X. Facile extraction of wheat straw by deep eutectic solvent (des) to produce lignin nanoparticles[J]. ACS Sustainable Chem Eng,2019,7(12):10248−10256.
    [10] KUMAR S, SHARMA S, ARUMUGAN S M, MIGLANI C, ELUMALAI S. Biphasic separation approach in the des biomass fractionation facilitates lignin recovery for subsequent valorization to phenolics[J]. ACS Sustainable Chem Eng,2020,8(51):19140−19154. doi: 10.1021/acssuschemeng.0c07747
    [11] WEN J L, SUN S L, XUE B L, SUN R C. Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens)[J]. Holzforschung,2013,67(6):613−627. doi: 10.1515/hf-2012-0162
    [12] LEE S H, DOHERTY T V, LINHARDT R J, DORDICK J S. Ionic liquid–mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis[J]. Biotechnol Bioeng,2009,102(5):1368−1376. doi: 10.1002/bit.22179
    [13] CHEN Z, WAN C X. A novel deep eutectic solvent/acetone biphasic system for high-yield furfural production[J]. Bioresour Technol Rep,2019,8:1−4.
    [14] ZHU Y T, LIAO Y H, LV W, LIU J, SONG X B, CHEN L G, WANG C G, SELS B F, MA L L. Complementing vanillin and cellulose production by oxidation of lignocellulose with stirring control[J]. ACS Sustainable Chem Eng,2020,8(6):2361−2374.
    [15] CHEN L H, DOU J Z, MA Q L, LI N, WU R C, BIAN H Y, YELLE D J, VUORINEN T, FU S Y, PAN X J, ZHU J Y. Rapid and near-complete dissolution of wood lignin at ≤ 80 ℃ by a recyclable acid hydrotrope[J]. Sci Adv,2017,3:e1701735. doi: 10.1126/sciadv.1701735
    [16] BANERJEE B, SEN R, PANDEY R A, CHAKRABARTI T, SATPUTE D, GIRI B S, MUDLIAR S. Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization[J]. Biomass Bioenergy,2009,33(12):1680−1686. doi: 10.1016/j.biombioe.2009.09.001
    [17] 常国璋, 谢建军, 杨会凯, 黄艳琴, 阴秀丽, 吴创之. 棕榈壳酶解–温和酸解木质素的结构及热解特性研究[J]. 燃料化学学报,2016,44(10):1664−1671.

    CHANG Guo-zhang, XIE Jian-jun, YANG Hui-kai, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Structure and pyrolysis characteristics of enzymatic/mild acidolysis lignin isolated from palm kernel shell[J]. J Fuel Chem Technol,2016,44(10):1664−1671.
    [18] SCHWANNINGER M, RODRIGUES J C, PEREIRA H, HINTERSOISSER B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose[J]. Vib Spectrosc,2004,36(1):23−40. doi: 10.1016/j.vibspec.2004.02.003
    [19] SUJIYAMA J, VUONG R, CHANZY H. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall[J]. Macromolecules,1991,24:4168−4175. doi: 10.1021/ma00014a033
    [20] FAIX O. Classification of lignins from different botanical origins by FT-IR spectroscopy[J]. Holzforschung,1991,45:21−27. doi: 10.1515/hfsg.1991.45.s1.21
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1185
  • HTML全文浏览量:  82
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 修回日期:  2021-04-12
  • 网络出版日期:  2021-04-27
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回