基于Ru/HZSM-5的生物油在线催化提质耐久性研究

Study on durability of online catalytic upgrading of bio-oil based on Ru/HZSM-5

  • 摘要: 采用Ru/HZSM-5在线催化提质生物油,通过综合品质指数(TQI),分析生物油产率和理化特性变化,并对生物油化学组成及催化剂结焦情况进行分析。结果表明,使用新鲜催化剂所得生物油产率和理化特性均较高,TQI从0.15升至6.45;随着使用次数的增加,TQI先小幅升高至6.68,而后快速下降至1.25,第4次使用后TQI仅为0.27。初期少量结焦反应使强酸位点部分钝化,提升了芳构化性能,当催化剂使用2次时,生物油中烃类相对含量达53.79%,其中,轻质脂肪烃相对含量为16.87%,单环芳香烃相对含量为32.65%;当使用4次时,烃类相对含量仅为9.32%,催化层丧失提质作用,并对热解气产生2次裂解或聚合等不利影响。前2次使用,催化剂焦炭主要是附着在表面的低温热解焦炭;当使用3次时,低温热解焦炭和高温催化焦炭均显著增多,催化剂活性急剧下降;继续使用使焦炭小幅增加,且以热解焦炭增加为主。

     

    Abstract: Ru/HZSM-5 was prepared and used to upgrade bio-oil online and the changes of bio-oil yield and physicochemical properties were analyzed through the total quality index ( TQI ). The changes of the chemical compositions of the bio-oils were compared; simultaneously, the coking situation of the catalyst was characterized. The results showed that the yield and physicochemical properties of bio-oil obtained by using fresh catalyst were high, and the TQI increased from 0.15 to 6.45; with the increase of using times, the TQI first increased slightly to 6.68, then decreased rapidly to 1.25, and reduced to only 0.27 after the fourth usage. In the initial stage, a small amount of coking reactions made the strong acid sites partially passivated, which improved the aromatization performance. When the catalyst was used twice, the relative content of hydrocarbons in the bio-oil reached 53.79%, of which the relative content of light aliphatic hydrocarbons was 16.87%, and the relative content of monocyclic aromatic hydrocarbons was 32.65%. After the fourth usage, the relative content of hydrocarbons in the bio-oil was only 9.32%, and the catalyst layer basically lost the upgrading effect, and had adverse effects on pyrolysis vapors such as secondary cracking or polymerization. Before the third usage, the low-temperature pyrolytic coke attached to the catalyst surface was dominant. After the third usage, the low-temperature pyrolytic coke and high-temperature catalytic coke increased significantly, and the catalyst activity decreased sharply. Continuous usage of catalyst slightly increased coke, of which the pyrolytic coke increased mainly.

     

/

返回文章
返回