Co@NC选择性催化木糖氢解制备1,2-二元醇

Selective xylose hydrogenolysis to 1,2-diols using Co@NC catalysts

  • 摘要: 本研究采用bottom-up法,制备了具有加氢和异构活性的碳包裹金属催化剂Co@NC,用于催化木糖氢解制备1,2-二元醇。结合XRD、TEM、XPS等表征手段对比了不同焙烧温度制备的Co@NC催化剂的物理和化学性质。研究发现,600 ℃焙烧的Co@NC催化剂具有最高的二元醇的总收率 (70.1%),其中,乙二醇、1,2-丙二醇和1,2-戊二醇的收率分别达到17.6%、25.1%和27.4%。机理研究表明,N的掺杂为Co@NC提供了碱性位点,在碱的催化作用下促进木糖向木酮糖的异构,再通过Retro-aldol反应得到乙醇醛和丙酮醇中间产物,最后经加氢得到乙二醇和1,2-丙二醇。1,2-戊二醇来源于木糖的加氢脱氧,其产率高于文献报道的最佳结果。本研究工作发展的水热稳定性优异的Co@NC催化剂为生物质高效制备1,2-二元醇提供了新的研究思路。

     

    Abstract: Xylose is the predominant component of hemicellulose, and converting xylose to valuable compounds is essential to achieve biomass utilization. Herein, N-doped carbon nanotubes encapsulated metal catalysts (Co@NC) with hydrogenation and isomerization capacities were synthesized via bottom-up method for catalyzing xylose hydrogenolysis into 1,2-diols. The physicochemical properties of Co@NC prepared with different calcination temperature were determined by XRD, TEM, XPS and so on. The Co@NC prepared at 600 ℃ exhibited the optimal catalytic activity, and the yield of diols reached 70.1% with ethylene glycol, 1,2-propylene glycol and 1,2-pentanediol being 17.6%, 25.1% and 27.4%, respectively. The doping N species served as the basic sites which benefited the isomerization of xylose to xylulose. Xylulose was subsequently converted to glycolaldehyde and acetol through Retro-aldol reaction, followed by hydrogenation to produce ethylene glycol and 1,2-propylene glycol. 1,2-Pentanediol derived from the selective hydrodeoxygenation of xylose, the yield of which surpassed the results that had been reported. The Co@NC catalysts with high robustness under harsh hydrothermal conditions provided new insights into the effective conversion of lignocellulosic biomass to 1,2-diols.

     

/

返回文章
返回