Abstract:
Catalytic cracking of triglycerides and their derivatives (e.g., fatty acid methyl esters, FAMEs) by HZSM-5 zeolite offers a promising route to produce renewable aromatics and olefins, but it is primarily hindered by the rapid catalyst deactivation caused by coke. In this work, the co-cracking of FAMEs and methanol over HZSM-5/Al
2O
3 composites was developed to regulate the product distribution and slower the catalyst deactivation. Co-feeding methanol with FAMEs enhanced the olefin selectivity at the expense of aromatics, and the total selectivities of aromatics and olefins added up to 70.9% with an optimized methanol content of 60%. The co-feeding of methanol not only promoted the olefin yield but also retarded the consecutive H-elimination of aromatics to polycyclic aromatics, thus reducing the coke formation and prolonging the catalyst lifespan. Under the conditions of 450 °C, 0.16 MPa and a space velocity of FAMEs at 4 h
−1, increasing the methanol blending ratio in FAMEs from zero to 50% reduced coke from 17.8% to 10.1% after reaction for 12 h. Besides, the spent catalyst for the co-cracking reaction could be easily regenerated by coke combustion, yielding similar structure, acidity and activity to those of the fresh one.