稻壳基碳材料负载钌催化剂的制备及其对氨硼烷水解制氢的催化性能

Preparation of rice husk-based carbon supported ruthenium catalyst for the hydrolysis of ammonia borane to produce hydrogen

  • 摘要: 本研究采用简单的浸渍还原法,在N2气氛下高温焙烧三聚氰胺和稻壳来制备氮掺杂稻壳活性炭载体(N-RHC),再采用RuCl3溶液通过浸渍法将活性组分Ru负载到N-RHC载体上,得到Ru/N-RHC催化剂,探究了其对氨硼烷制氢的催化性能。结果表明,Ru负载量为5%(质量分数)的Ru/N-RHC催化剂具有较好的氨硼烷制氢催化性能,反应转化频率(TOF)达83.71 min−1,在光的照射下,该催化剂上氨硼烷水解的活化能从88.9 kJ/mol降到64.9 kJ/mol,且制氢速率与氨硼烷浓度以及催化剂浓度呈现正相关。

     

    Abstract: An efficient dehydrogenation catalyst is crucial for the application of ammonia borane (NH3BH3, AB) as a solid chemical hydrogen storage material. In this work, a kind of nitrogen-doped rice husk activated carbon (N-RHC) was prepared by roasting melamine and rice husk at high temperature under nitrogen atmosphere. With N-RHC as the support, the rice husk-based carbon supported ruthenium catalyst (Ru/N-RHC) was prepared through impregnation with the RuCl3 solution and its catalytic performance in the hydrolysis of ammonia borane to produce hydrogen was investigated. The results indicate that the Ru/N-RHC catalyst with a Ru loading of 5% performs excellently in the hydrolysis of ammonia borane; the reaction turnover frequency (TOF) reaches 83.71 min−1 and the apparent activation energy decreases from 88.9 to 64.9 kJ/mol under light irradiation. In addition, the hydrogen production rate is positively correlated with the content of ammonia borane and catalyst.

     

/

返回文章
返回