Abstract:
The distribution of sulfur and heavy metals in char of Gansu lignite and Shanxi subbituminous coal was studied by means of pyrolysis and magnetic separation at different pyrolysis temperatures. The contents of sulfur and heavy metal elements in char were analyzed and determined by ICP-OES and ICP-MS, and the mineral composition and apparent morphology of char were characterized by XRD and SEM-EDS. The results show that the highest desulfurization rates of Gansu lignite and Shanxi Subbituminous coal can reach 52.37% and 17.54% respectively under optimal conditions. This is related to the phase transition behavior of pyrite during pyrolysis. The desulphurization rate of Shanxi subbituminous char is lower than that of Gansu lignite char mainly because the occurrence and inclusion of associated minerals and the organic matter influence the transformation of pyrite during pyrolysis. Ni and Cr have a strong affinity with Fe–S minerals, which are enriched into magnetic char with sulfur. At 800 ℃, Cr content in magnetic char of Gansu coal and Shanxi coal is 8698.25 µg/g and 32327.47 µg/g higher than that in non-magnetic char, respectively. The pyrolytic magnetization of low-rank coal and the distribution of sulfur and heavy metals in its char products provide data support and a new idea for removal of sulfur and heavy metals from coal.