利用煤矸石制备负载Fe3O4的陶瓷复合材料及微波吸收性能研究

Preparation and microwave absorption of Fe3O4 loaded ceramic composite by recycling of coal gangue

  • 摘要: 本研究以固废煤矸石为主要原料,通过对其进行破碎、球磨、酸洗处理、造粒成球和煅烧得到煤矸石载体,经液相负载与原位碳热还原制得Fe3O4负载的陶瓷复合微波吸收材料,并且研究了Fe3O4负载量对复合材料结构及电磁性能的影响规律。结果表明,当焙烧温度为600 ℃、前驱体溶液浓度为1.25−1.5 mol/L时,复合材料的微波吸收性能最佳,涂层厚度为2.0 mm时的最低反射损耗值和有效吸收带宽分别可达−20.1 dB和4.7 GHz,主要归因于复合材料良好的阻抗匹配与衰减特性。本实验制备流程简单,为固废煤矸石的回收利用提供了新思路,同时也可以降低微波吸收材料的生产成本。

     

    Abstract: The Fe3O4 loaded ceramic composite microwave absorbents were successfully prepared by recycling the solid waste coal gangue. First, the coal gangue based matrix was obtained by crushing, ball-milling, acid pickling, granulation and sintering process, and then the subsequent experiment involved loading precursor solution as well as in-situ carbothermal reduction. Moreover, the influence of Fe3O4 loading content on the microstructure and electromagnetic performance was also investigated. It was founded that the ceramic composites exhibited excellent microwave absorption when the reduction temperature kept 600 ℃ and the concentration of precursor solution was 1.25−1.5 mol/L, under which the minimum reflection loss value reached −20.1 dB and the effective absorption bandwidth kept 4.7 GHz as the coating thicknesses was 2.0 mm. This was attributed to the better impedance match and attenuation characteristic. The simple technological process provided in this work could offer a novel method for the recycling of coal gangue, and was beneficial for the low-cost of microwave absorbents.

     

/

返回文章
返回