高温煤焦油增韧酚醛泡沫的制备及性能表征

Preparation and performance of high-temperature coal tar toughened phenolic foams

  • 摘要: 以高温煤焦油为原料,部分替代石油基苯酚合成可发泡性酚醛树脂,通过发泡工艺制备煤焦油酚醛泡沫。利用气相色谱质谱仪和红外光谱仪分别对高温煤焦油和酚醛泡沫进行分析表征;采用光学显微镜、热重分析仪、极限氧指数仪、导热系数仪等对酚醛泡沫的表观形貌、压缩强度、粉化率、热稳定性、阻燃性能和隔热性能进行表征。结果表明,煤焦油酚醛泡沫的压缩强度有所降低,但是泡沫的韧性提高,其粉化率下降。同时煤焦油酚醛泡沫具有良好的热稳定性,当替代率为10%−15%时,极限氧指数最高为36.1%,导热系数最低为0.034 W/(m·K)。这说明,高温煤焦油能够部分替代苯酚制备出性能优良的酚醛泡沫,为高温煤焦油的高值化利用提供了新的思路。

     

    Abstract: High-temperature coal tar foaming phenolic resins and phenolic foams were prepared by partially displacing petroleum-based phenol. High-temperature coal tar and the phenolic foams were analyzed with gas chromatograph/mass spectrometer and infrared spectroscopy. Morphology and performance of the phenolic foams including compression strength, slag rate, thermal stability, flame resistance, and thermal insulation were characterized with optical microscope, thermogravimeter, limited oxygen index instrument, and thermal conductometer. The results show that compression strength of the phenolic foams slightly decreases and slag rate reduces, which indicates the enhancement of toughness. Moreover, the phenolic foams possess good thermal stability, flame resistance, and thermal insulation. When the substitution rate is 10%−15%, it has the maximum limited oxygen index of 36.1% and minimum thermal conductivity of 0.034 W/(m·K). The aforementioned results suggest that high-temperature coal tar can be used to partially substitute phenol to prepare phenolic foams with good performance, which provides a new route for high value-added utilization of high temperature coal tar.

     

/

返回文章
返回