孪晶HZSM-5@Silicalite-1核壳结构催化剂的制备及甲苯甲醇烷基化性能研究

Preparation of core-shell structural twin HZSM-5@Silicalite-1 catalysts and its performance for toluene alkylation with methanol

  • 摘要: 本研究采用水热结晶法合成了孪晶HZSM-5分子筛,并在表面外延生长Silicalite-1(S-1)纯硅沸石,制备了HZSM-5@Silicalite-1核壳结构催化剂。与孪晶HZSM-5相比,HZSM-5@Silicalite-1核壳结构催化剂在甲苯甲醇烷基化反应中表现出优异的催化性能。在470 ℃、0.1 MPa和临氢反应条件下,HZSM-5@40Silicalite-1催化剂的甲苯单程转化率为8.5%,对二甲苯选择性为98.4%。进一步研究了核相HZSM-5与S-1壳层前驱体固液质量比对表面S-1晶体生长的影响,同时考察了S-1壳层对孪晶HZSM-5催化性能的影响。通过SEM、XRD、XRF、液体静态吸附、N2吸附-脱附、NH3-TPD、Py-FTIR等表征实验对核壳材料的结构和酸性质进行了详细研究。

     

    Abstract: The technology of alkylation of toluene with methanol to p-xylene has attracted much attention due to the high selectivity of p-xylene and low energy consumption in product separation unit. Twin HZSM-5 molecular sieve has the characteristics of large coverage proportion of zigzag channels on the surface and less aluminum distribution on the outer surface. It shows high selectivity for p-xylene in the alkylation of toluene and methanol. In this paper, silicalite-1 (S-1) was grown epitaxially on the surface of twin HZSM-5 molecular sieve by hydrothermal crystallization, and twin HZSM-5@Silicalite-1 core-shell catalyst was obtained. Compared with twin HZSM-5, HZSM-5@40Silicalite-1 core-shell catalyst shows excellent catalytic performance in toluene methanol alkylation. Under the reaction conditions of 470 ℃, 0.1 MPa and hydrogen atmosphere, the conversion of toluene is 8.5% and the selectivity of p-xylene is 98.4%. Then, the effect of solid-liquid mass ratio of nuclear HZSM-5 and silicalite-1 shell precursors on the growth of silicalite-1 crystal was further studied, and the effect of silicalite-1 on the catalytic performance of twin HZSM-5 was investigated. The pore structure and acid properties of core-shell materials were studied in detail by SEM, XRD, XRF, liquid static adsorption, N2 adsorption desorption, NH3-TPD and Py-FTIR.

     

/

返回文章
返回