留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鸡蛋壳负载Co3O4催化剂制备及其N2O分解性能研究

胡晓波 冯林雁 武瑞芳 王永钊 赵永祥

胡晓波, 冯林雁, 武瑞芳, 王永钊, 赵永祥. 鸡蛋壳负载Co3O4催化剂制备及其N2O分解性能研究[J]. 燃料化学学报(中英文), 2024, 52(5): 707-716. doi: 10.19906/j.cnki.JFCT.2023079
引用本文: 胡晓波, 冯林雁, 武瑞芳, 王永钊, 赵永祥. 鸡蛋壳负载Co3O4催化剂制备及其N2O分解性能研究[J]. 燃料化学学报(中英文), 2024, 52(5): 707-716. doi: 10.19906/j.cnki.JFCT.2023079
HU Xiaobo, FENG Linyan, WU Ruifang, WANG Yongzhao, ZHAO Yongxiang. Preparation of eggshell supported Co3O4 catalyst and tested for N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 707-716. doi: 10.19906/j.cnki.JFCT.2023079
Citation: HU Xiaobo, FENG Linyan, WU Ruifang, WANG Yongzhao, ZHAO Yongxiang. Preparation of eggshell supported Co3O4 catalyst and tested for N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 707-716. doi: 10.19906/j.cnki.JFCT.2023079

鸡蛋壳负载Co3O4催化剂制备及其N2O分解性能研究

doi: 10.19906/j.cnki.JFCT.2023079
基金项目: 国家自然科学基金(21673132),山西省基础研究计划(202303021212298),山西省高等学校科技创新项目(2021L458)和忻州师范学院院级项目(2021KY03)资助
详细信息
    通讯作者:

    Tel: 0351-7010588, Fax: 0350-7011688, E-mail: catalyst@sxu.edu.cn

    yxzhao@sxu.edu.cn

  • 中图分类号: O643.36

Preparation of eggshell supported Co3O4 catalyst and tested for N2O decomposition

Funds: The project was supported by National Natural Science Foundation of China (21673132), Fundamental Research Program of Shanxi Province (202303021212298), Technological Innovation Programs of Higher Education Institutions in Shanxi (2021L458) and Research Fund of Xinzhou Normal University (2021KY03).
  • 摘要: 采用废弃的鸡蛋壳作载体,沉积沉淀法制备了一系列不同Co3O4含量Co3O4/鸡蛋壳催化剂,并在连续流动微反装置上考察了N2O分解性能。结果表明,当Co3O4质量分数为20%时,催化剂表现出优异的N2O分解性能。在空速10000 h−1和N2O含量0.1%的条件下,400 ℃可实现N2O完全转化;其比活性约为Co3O4催化剂的4.3倍(反应温度为440 ℃);同时,该催化剂对原料气中3% O2、3.3% H2O和/或2.0×10−4 NO表现出较强的耐受性和较高的稳定性。分析催化剂的多种表征结果发现,CaCO3作为鸡蛋壳的主要成分,与活性组分Co3O4紧密结合,两者的强相互作用导致20%Co3O4/鸡蛋壳催化剂中产生更多的氧空位和Co3+;Co3O4氧化还原性能得到提高,Co−O键被有效削弱;此外,该强相互作用可提高20%Co3O4/鸡蛋壳催化剂表面碱性位点的强度,增大碱性位点数量,更易于转移电子而促进N2O分解。
  • FIG. 3139.  FIG. 3139.

    FIG. 3139.  FIG. 3139.

    图  1  材料的XRD谱图

    Figure  1  The powder X-ray diffractograms of the materials

    图  2  材料的FT-IR谱图

    Figure  2  FT-IR spectra obtained for the materials

    图  3  Co3O4 和20%Co3O4/鸡蛋壳催化剂XPS谱图Co 2p (a) 和O 1s (b)

    Figure  3  XPS spectra of Co 2p core-level (a) and O 1s core-leve (b) for the Co3O4 and 20%Co3O4/eggshell catalysts

    图  4  材料的N2吸附-脱附等温曲线

    Figure  4  Nitrogen adsorption-desorption isotherms of the materials

    图  5  催化剂的(HR)-TEM图像

    Figure  5  (HR)-TEM images of the catalysts

    图  6  催化剂HADDF-STEM和EDX映射图像

    Figure  6  HADDF-STEM and EDX mapping images of the catalyst

    图  7  材料的H2-TPR谱图

    Figure  7  H2-TPR profiles for the materials

    图  8  催化剂的CO2-TPD谱图

    Figure  8  CO2-TPD profiles of the catalysts

    图  9  催化剂的O2-TPD谱图

    Figure  9  O2-TPD profiles of the catalysts

    图  10  催化剂N2O分解活性

    Figure  10  Catalytic performances of the catalysts

    Reaction condition: 1.0×10−3 N2O balanced with Ar, GHSV=10000 h−1, 1 atm.

    图  11  20%Co3O4/eggshell (a) 和 Co3O4 (b)不同原料气中N2O转化率

    Figure  11  N2O conversion in different feed compositions over 20%Co3O4/eggshell (a) and Co3O4 (b)

    Reaction condition: 1.0×10−3 N2O balanced with Ar, GHSV=10000 h−1, 1 atm.

    图  12  400 ℃时原料气中周期切换杂质气体3% O2, 3.3% H2O和2.0×10−4 NO,20%Co3O4/eggshell催化剂N2O转化率

    Figure  12  N2O conversion over 20%Co3O4/eggshell at 400 ℃ changed with time on stream when impurity gases (3% O2, 3.3% H2O, 2.0×10−4 NO) were injected in or cut off from the feed stream

    Reaction condition: GHSV=10000 h−1, 1 atm.

    表  1  材料的织构参数

    Table  1  The textural parameters for the materials

    MaterialBET
    surface
    area/
    (m2·g−1)
    Total
    pore
    volume/
    (cm3·g−1)
    Average
    pore
    diameter/
    nm
    CaCO34.30.0178.7
    Eggshell4.50.0178.8
    10%Co3O4/eggshell9.40.03412.6
    20%Co3O4/eggshell14.50.05114.2
    30%Co3O4/eggshell22.80.07117.1
    Co3O434.80.15819.7
    下载: 导出CSV

    表  2  催化剂不同碱性位点吸附CO2数量

    Table  2  The desorption amount of CO2 for different basic sites on the catalysts

    CatalystWeak
    strength
    basic
    sites/
    (μmol·g−1)
    Strong
    strength
    basic
    sites/
    (μmol·g−1)
    Total
    basic
    sites/
    (μmol·g−1)
    10%Co3O4/eggshell17.416.233.6
    20%Co3O4/eggshell56.648.5105.1
    30%Co3O4/eggshell23.521.344.8
    Co3O439.825.164.9
    下载: 导出CSV

    表  3  催化剂不同氧物种脱附O2数量

    Table  3  The desorption amount of O2 for different oxygen species on the catalysts

    CatalystSurface oxygen species/(μmol·g−1)Lattice oxygen species/(μmol·g−1)Total oxygen species/(μmol·g−1)
    10%Co3O4/eggshell23.227.851.0
    20%Co3O4/eggshell47.236.183.3
    30%Co3O4/eggshell25.334.960.2
    Co3O436.411.748.1
    下载: 导出CSV
  • [1] KLEGOVA A, PACULTOVA K, KISKA T. Washcoated open-cell foam cobalt spinel catalysts for N2O decomposition[J]. Mol Catal,2022,533:112754. doi: 10.1016/j.mcat.2022.112754
    [2] ZHAO F L, WANG C Z, WANG D D, et al. Efficient catalytic decomposition of N2O over Cd-doped NiO in the presence of O2[J]. Appl Catal A: Gen,2023,649:118946. doi: 10.1016/j.apcata.2022.118946
    [3] BOZORGI B, KARIMI-SABET J, KHADIV-PARSI P. The removal of N2O from gas stream by catalytic decomposition over Pt-alkali metal/SiO2[J]. Environ Technol Innovation,2022,26:102344. doi: 10.1016/j.eti.2022.102344
    [4] KONSOLAKIS M. Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: Catalytic performance, mechanistic considerations, and surface chemistry aspects[J]. ACS Catal,2015,5(11):6397−6421. doi: 10.1021/acscatal.5b01605
    [5] 赵天琪, 高强, 廖卫平, 等. 掺加Nd和K改性对Co3O4催化分解N2O活性的影响[J]. 燃料化学学报,2019,47(9):1120−1128. doi: 10.1016/S1872-5813(19)30046-5

    ZHAO Tianqi, GAO Qiang, LIAO Weiping, et al. Effect of Nd-incorporation and K-modification on catalytic performance of Co3O4 for N2O decomposition[J]. J Fuel Chem Technol,2019,47(9):1120−1128. doi: 10.1016/S1872-5813(19)30046-5
    [6] RICHARDS N, CARTER J H, NOWICKA E, et al. Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition[J]. Appl Catal B: Environ,2020,264:118501. doi: 10.1016/j.apcatb.2019.118501
    [7] XIONG Y, ZHAO Y M, QI X K, et al. Strong structural modification of Gd to Co3O4 for catalyzing N2O decomposition under simulated real tail gases[J]. Environ Sci Technol,2021,55(19):13335−13344.
    [8] 郑珂, 王永钊, 胡晓波, 等. 还原-氧化预处理对Co3O4催化分解N2O性能的影响[J]. 燃料化学学报,2019,47(4):455−463.

    ZHENG Ke, WANG Yongzhao, HU Xiaobo, et al. Effect of reduction-oxidation pretreatment on the catalytic performance of Co3O4 catalyst in N2O decomposition[J]. J Fuel Chem Technol,2019,47(4):455−463.
    [9] LIANG X L, TANG H L, YANG F F, et al. Ammonia-steam treated FeZSM-5 for direct N2O decomposition[J]. Microporous Mesoporous Mater,2019,290:109655. doi: 10.1016/j.micromeso.2019.109655
    [10] LIN F, ANDANA T, WU Y Q, et al. Catalytic site requirements for N2O decomposition on Cu-, Co-, and Fe-SSZ-13 zeolites[J]. J Catal,2021,401:70−80. doi: 10.1016/j.jcat.2021.07.012
    [11] WANG Y Z, ZHENG K, HU X B, et al. Y2O3 promoted Co3O4 catalyst for catalytic decomposition of N2O[J]. Mol Catal,2019,470:104−111. doi: 10.1016/j.mcat.2019.04.002
    [12] KIM M J, LEE S J, RYU I S, et al. Catalytic decomposition of N2O over cobalt based spinel oxides: The role of additives[J]. Mol Catal,2017,442:202−207. doi: 10.1016/j.mcat.2017.05.029
    [13] ZHANG Q L, TANG X S, NING P, et al. Enhancement of N2O catalytic decomposition over Ca modified Co3O4 catalyst[J]. RSC Adv,2015,5(63):51263−51270. doi: 10.1039/C5RA04062K
    [14] IVANOVA Y A, SUTORMINA E F, ISUPOVA L A, et al. Effect of the composition of NixCo3–xO4 (x=0–0.9) oxides on their catalytic activity in the low-temperature reaction of N2O decomposition[J]. Kinet Catal,2018,59(3):357−362. doi: 10.1134/S0023158418030072
    [15] WANG Y Z, HU X B, ZHENG K, et al. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catal Commun,2018,111:70−74. doi: 10.1016/j.catcom.2018.04.004
    [16] HU X B, WANG Y Z, WU R F, et al. Effects of zirconia crystal phases on the catalytic decomposition of N2O over Co3O4/ZrO2 catalysts[J]. Appl Surf Sci,2020,514:145892. doi: 10.1016/j.apsusc.2020.145892
    [17] GRZYBEK G, STELMACHOWSKI P, GUDYKA S, et al. Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N2O decomposition: The role of the interface periphery[J]. Appl Catal B: Environ,2016,180:622−629. doi: 10.1016/j.apcatb.2015.07.027
    [18] KLEGOVÁ A, PACULTOVÁ K, FRIDRICHOVÁ D, et al. Cobalt oxide catalysts on commercial supports for N2O decomposition[J]. Chem Eng Technol,2017,40:981−990. doi: 10.1002/ceat.201600628
    [19] YU H B, WANG X P, LI Y. Strong impact of cobalt distribution on the activity for Co3O4/CaCO3 catalyzing N2O decomposition[J]. Catal Today,2020,339:274−280. doi: 10.1016/j.cattod.2018.10.036
    [20] HU X B, WANG Y Z, WU R F, et al. Graphitic carbon nitride-supported cobalt oxides as a potential catalyst for decomposition of N2O[J]. Appl Surf Sci,2021,538:148157. doi: 10.1016/j.apsusc.2020.148157
    [21] LACA A, LACA A, DÍAZ M. Eggshell waste as catalyst: A review[J]. J Environ Manage,2017,197:351−359. doi: 10.1016/j.jenvman.2017.03.088
    [22] YUSUFF A S, ADENIYI O D, AZEEZ S O, et al. Synthesis and characterization of anthill-eggshell-Ni-Co mixed oxides composite catalyst for biodiesel production from waste frying oil[J]. Biofuels Bioprod Biorefin,2019,13(1):37−47. doi: 10.1002/bbb.1914
    [23] GUO Y L, YANG D P, LIU M H, et al. Enhanced catalytic benzene oxidation over a novel waste-derived Ag/eggshell catalyst[J]. J Mater Chem A,2019,7(15):8832−8844. doi: 10.1039/C8TA10822F
    [24] LI Z H, YANG D P, CHEN Y S, et al. Waste eggshells to valuable Co3O4/CaCO3 materials as efficient catalysts for VOCs oxidation[J]. Mol Catal,2020,483:110766. doi: 10.1016/j.mcat.2020.110766
    [25] 郑丽, 李和健, 徐秀峰. 碳球为模板水热合成Mg-Co复合氧化物及其催化分解N2O[J]. 燃料化学学报(中英文),2018,46(5):569−577. doi: 10.1016/S1872-5813(18)30024-0

    ZHENG Li, LI Hejian, XU Xiufeng. Catalytic decomposition of N2O over Mg-Co composite oxides hydrothermally prepared by using carbon sphere as template[J]. J Fuel Chem Technol,2018,46(5):569−577. doi: 10.1016/S1872-5813(18)30024-0
    [26] SUN J R, SONG A L, TIAN Y, et al. Unravelling the effect of alkali metal deposition on Co3O4 for catalytic decomposition of N2O[J]. ChemCatChem,2023,15:1−10.
    [27] 李和健, 郑丽, 赵天琪, 等. 水热合成Co3O4的制备参数调变及其催化分解N2O性能[J]. 燃料化学学报,2018,46(6):717−724. doi: 10.1016/S1872-5813(18)30031-8

    LI Hejian, ZHENG Li, ZHAO Tianqi, et al. Effect of preparation parameters on the catalytic performance of hydrothermally synthesized Co3O4 in the decomposition of N2O[J]. J Fuel Chem Technol,2018,46(6):717−724. doi: 10.1016/S1872-5813(18)30031-8
    [28] YU H B, WANG X P, WU, X X, et al. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulated real reaction conditions[J]. Chem Eng J,2018,334:800−806. doi: 10.1016/j.cej.2017.10.079
    [29] 刘晓丽, 王永钊, 赵永祥. Sr掺杂羟基磷灰石负载Co3O4催化N2O分解[J]. 燃料化学学报,2021,49(8):1190−1200.

    LIU Xiaoli, WANG Yongzhao, ZHAO Yongxiang. Co3O4 supported on Sr doped hydroxyapatite as catalysts for N2O catalytic decomposition[J]. J Fuel Chem Technol,2021,49(8):1190−1200.
    [30] DONG N, CHEN M Y, YE Q, et al. Promotional effect of cobalt doping on catalytic performance of cryptomelane-type manganese oxide in toluene oxidation[J]. J Environ Sci,2023,126:263−274. doi: 10.1016/j.jes.2022.03.024
    [31] ZHANG C, ZHANG Z P, SUI C, et al. Catalytic decomposition of N2O over Co-Ti oxide catalysts: Interaction between Co and Ti oxide[J]. ChemCatChem,2016,8(12):2155−2164. doi: 10.1002/cctc.201600231
    [32] HU X B, WANG Y Z, WU R F, et al. N-doped Co3O4 catalyst with a high efficiency for the catalytic decomposition of N2O[J]. Mol Catal,2021,509:111656. doi: 10.1016/j.mcat.2021.111656
    [33] 窦喆, 张海杰, 潘燕飞, 等. N2O在钾改性Cu-Co尖晶石型复合氧化物上的催化分解[J]. 燃料化学学报,2014,42(2):238−245. doi: 10.1016/S1872-5813(14)60016-5

    DOU Zhe, ZHANG Haijie, PAN Yanfei, et al. Catalytic decomposition of N2O over potassium-modified Cu-Co spinel oxides[J]. J Fuel Chem Technol,2014,42(2):238−245. doi: 10.1016/S1872-5813(14)60016-5
    [34] 赵婉君, 李潇, 党慧, 等. 负载型Pd-Cu催化剂的制备及富氢气氛下CO优先氧化性能[J]. 高等学校化学学报(中英文),2022,43(3):20210754.

    ZHAO Wanjun, LI Xiao, Dang Hui, et al. Preparation of supported Pd-Cu catalyst and its preferential oxidation of CO under hydrogen-rich atmosphere[J]. Chem J Chin Univ,2022,43(3):20210754.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  62
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2023-11-20
  • 录用日期:  2023-11-24
  • 网络出版日期:  2023-12-13
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回