李学琴, 刘鹏, 卢岩, 王志伟, 吴幼青, 雷廷宙. 废弃生物质催化热解制富氢燃气:催化剂性能的影响[J]. 燃料化学学报(中英文), 2024, 52(7): 976-987. DOI: 10.19906/j.cnki.JFCT.2024011
引用本文: 李学琴, 刘鹏, 卢岩, 王志伟, 吴幼青, 雷廷宙. 废弃生物质催化热解制富氢燃气:催化剂性能的影响[J]. 燃料化学学报(中英文), 2024, 52(7): 976-987. DOI: 10.19906/j.cnki.JFCT.2024011
LI Xueqin, LIU Peng, LU Yan, WANG Zhiwei, WU Youqing, LEI Tingzhou. Catalytic pyrolysis of waste biomass to produce hydrogen-rich gas:Influence of catalyst performance[J]. Journal of Fuel Chemistry and Technology, 2024, 52(7): 976-987. DOI: 10.19906/j.cnki.JFCT.2024011
Citation: LI Xueqin, LIU Peng, LU Yan, WANG Zhiwei, WU Youqing, LEI Tingzhou. Catalytic pyrolysis of waste biomass to produce hydrogen-rich gas:Influence of catalyst performance[J]. Journal of Fuel Chemistry and Technology, 2024, 52(7): 976-987. DOI: 10.19906/j.cnki.JFCT.2024011

废弃生物质催化热解制富氢燃气:催化剂性能的影响

Catalytic pyrolysis of waste biomass to produce hydrogen-rich gas:Influence of catalyst performance

  • 摘要: 本研究通过超声波辅助过量浸渍法将活性组分镍、助剂铁与HZSM-5分子筛结合来提高富氢燃气的产率;进一步以废弃铝灰(ASA)与HZSM-5分子筛作为共载体制备铝灰与HZSM-5分子筛符合共载镍-铁催化剂,并将其用于强化生物质催化热解产富氢燃气的过程。结果表明,在热解温度700 ℃下,Ni-Fe/HZSM-5可使富氢燃气的产率提高到56.49%(约为230.59 mL/g),氢气产率提高到63.12%,产氢效率提高到0.71%,CO得率增加到65.77 mL/g;足够的Ni-Fe/HZSM-5催化剂量强化了生物质热解的产氢路径,促进了积炭气化反应,起到提高H2和CO产率的双重作用。不同种类生物质的组成差异导致催化热解的产物分布不同,Ni-Fe/HZSM-5催化生物质热解气体产率的顺序为PR(74.21%)>WSt(54.71%)>CR(53.5%)>MCh(52.47%)>WSh(52.10%)>CS(46.49%)。HZSM-5和ASA载体间的协同作用强化了CH4与CO2的重整过程,抑制了逆水气变换反应,获得了53.37%和41.56%的气体和焦油产率;并加速了积炭气化反应从而减少了积炭量(0.05 g/g),获得了5.07%的半焦产率;Ni-Fe/ASA@HZSM-5具有较好的热裂化能力和脱氧能力,有助于促进HZSM-5催化剂上富氢燃气的生成;为开发高温热解气深度净化与高效利用技术提供理论支撑,有效指导多级催化重整的新型双催化床层的开发。

     

    Abstract: Catalytic pyrolysis of waste biomass is a promising method for the production of hydrogen-rich gas. HZSM-5 carrier is the premise of ensuring the thermal stability and long life of catalytic materials, and plays a mechanical role in bearing the active component nickel (Ni). At the same time, aluminum ash (ASA), as an important waste in the production process of aluminum industry, is mainly composed of Al2O3 and a large number of heavy metal oxides such as Na2O, CaO, MgO, Fe2O3 and so on. In this study, aiming at the technical bottleneck problems such as the low performance of traditional HZSM-5 molecular sieve and the difficulty of resource utilization of aluminum ash, the active component nickel (Ni) and promoter iron (Fe) were combined with HZSM-5 molecular sieve by ultrasonic-assisted excessive impregnation to improve the yield of hydrogen-rich gas. Furthermore, waste aluminum ash (ASA) and HZSM-5 molecular sieve were used as co-carriers to prepare aluminum ash co-supported Ni-Fe catalyst with HZSM-5 molecular sieve, and it was used to enhance the process of hydrogen-rich gas production by the catalytic pyrolysis of biomass. The results showed that the heat transfer efficiency decreased with the increase of heating rate during pyrolysis of biomass. After compensation, the apparent kinetic parameters (E and A) of pyrolysis of different biomass were obtained. At the pyrolysis temperature of 700 ℃, Ni-Fe/HZSM-5 catalyst increased the yield of hydrogen-rich gas to 56.49% (about 230.59 mL/g), hydrogen yield to 63.12%, hydrogen production efficiency to 0.71%, and CO yield to 65.77 mL/g. Sufficient amount of Ni-Fe/HZSM-5 catalyst enhanced the pathway of hydrogen production by the catalytic pyrolysis of biomass, promoted the gasification reaction of carbon deposition, and played a dual role in increasing the yield of H2 and CO. The synergism between HZSM-5 and ASA carriers enhanced the reforming process of CH4 and CO2, inhibited the reverse water vapor shift reaction, obtained 53.37% and 41.56% gas and tar yields. At the same time, the gasification reaction of carbon deposition was also accelerated, reduced the char yield to 5.07%, and obtained the carbon deposition of 0.05 g/g. Ni-Fe/ASA@HZSM-5 had good thermal cracking ability and deoxidization ability, which was helpful to promote the formation of hydrogen-rich gas on HZSM-5 as a base catalyst. From the point of view of proximate analysis and chemical composition of biomass, the composition of different kinds of biomass varied greatly, and the product distribution of catalytic pyrolysis also had a great influence. The order of gas yield of pyrolysis of biomass catalyzed by Ni-Fe/HZSM-5 was PR (74.21%) > WSt (54.71%) > CR (53.5%) > MCh (52.47%) > WSh (52.10%) > CS (46.49%), which provided theoretical support for the development of deep purification and efficient utilization of high temperature pyrolysis gas, and effectively guided the development of a new double catalytic bed for multi-stage catalytic reforming.

     

/

返回文章
返回