两类药渣的水热提质效果及其燃烧特性研究

Influence of hydrothermal upgrading on the fuel characteristics and combustion behavior of herb wastes

  • 摘要: 以中药药渣(HTW)与抗生素药渣(PMW)为对象,采用X射线光电子能谱、热重分析仪、量热仪与傅里叶红外分光光度计等技术分析两类药渣的差异并探究水热处理对药渣的提质效果与作用机理。结果表明,HTW含有大量木质纤维类成分,而PMW则以蛋白质与多糖为主;尽管这两类组分在水热提质中的转化途径有所区别,但均能提高药渣的热值(HTW:从19.4到26.2 MJ/kg;PMW:从19.1到29.3 MJ/kg)。同时,药渣的煤化程度随温度的上升而增加,甚至能接近烟煤水平。此外,由于水热过程中的脱挥发分与芳构化作用使得药渣中低能量的碳氢键转变为高能量的碳碳双键,不仅改善了药渣的燃烧性能,还使药渣在燃烧过程更为稳定且充分。

     

    Abstract: Based on two kinds of biowastes (penicillin mycelia waste, PMW; herbal tea waste, HTW), the difference of biowastes derived from various sources and their fuel characteristics and combustion behavior after hydrothermal upgrading were investigated with the assistance of XPS, TGA and FTIR analyses. The results show that HTW mainly contains lignocelluloses, while PMW mostly consists of protein and polysaccharides. Although the specific conversion paths of various components are slightly different during hydrothermal process, both the higher heating values (HHV) of biowastes are improved (HTW:from 19.4 to 26.2 MJ/kg; PMW:from 19.1 to 29.3 MJ/kg); meanwhile, the coalification degree of biowastes increases with the growing temperature, even reaching the degree of bituminite at 300℃. In addition, the variation in carbon content and structure reflects that the reaction of devolatilization and aromatization during hydrothermal process can improve not only the fuel characteristics but also the combustion behavior.

     

/

返回文章
返回