留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对CuCe/AC催化剂甲醇氧化羰基化性能的影响

张国强 郭天玉 郑华艳 李忠

张国强, 郭天玉, 郑华艳, 李忠. 焙烧温度对CuCe/AC催化剂甲醇氧化羰基化性能的影响[J]. 燃料化学学报, 2016, 44(6): 674-679.
引用本文: 张国强, 郭天玉, 郑华艳, 李忠. 焙烧温度对CuCe/AC催化剂甲醇氧化羰基化性能的影响[J]. 燃料化学学报, 2016, 44(6): 674-679.
ZHANG Guo-qiang, GUO Tian-yu, ZHENG Hua-yan, LI Zhong. Effect of calcination temperature on catalytic performance of CuCe/AC catalysts for oxidative carbonylation of methanol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 674-679.
Citation: ZHANG Guo-qiang, GUO Tian-yu, ZHENG Hua-yan, LI Zhong. Effect of calcination temperature on catalytic performance of CuCe/AC catalysts for oxidative carbonylation of methanol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 674-679.

焙烧温度对CuCe/AC催化剂甲醇氧化羰基化性能的影响

基金项目: 

国家自然科学基金 21276169, U1510203

详细信息
  • 中图分类号: O643.38

Effect of calcination temperature on catalytic performance of CuCe/AC catalysts for oxidative carbonylation of methanol

More Information
  • 摘要: 采用先浸渍Ce后浸渍Cu的方法制备了活性炭 (AC) 负载CuCe催化剂, 考察了焙烧温度对CuCe/AC催化剂表面结构及其催化甲醇气相氧化羰基化合成碳酸二甲酯 (DMC) 性能的影响, 并采用XRD、XPS和H2-TPR等表征分析了活性组分含量和价态等性质。结果表明, 催化剂中高价态的Cu2+逐渐被还原为低价态的Cu+和Cu0, 催化剂中发生Cu2+→Cu+→Cu0的还原变化过程。催化剂经450℃焙烧处理后, 催化剂中仍然存在一定量的Cu2O晶相, 表明Ce与Cu的相互作用抑制了部分Cu2O的还原。当焙烧处理温度为300℃时, 催化剂中的Cu+含量达到最高, 此时催化剂的活性达到最优, DMC的时空收率、选择性以及甲醇转化率分别为143.4mg/(g·h)、85.2%和4.1%。
  • 图  1  不同焙烧温度下催化剂的XRD谱图

    Figure  1  XRD patterns of catalysts calcinated at different temperatures

    图  2  不同焙烧温度下催化剂的Cu 2p XPS谱图 (a) 和Cu 2p3/2 XPS高斯拟合图 (b)

    Figure  2  Cu 2p XPS spectra (a) and Cu 2p3/2 XPS Gaussian fitting patterns (b) of catalysts calcinated at different temperatures

    图  3  不同焙烧温度下催化剂的CuLMM AES谱图

    Figure  3  CuLMM AES spectra of catalysts calcinated at different temperatures

    图  4  不同焙烧温度下催化剂的Ce 3d XPS谱图

    Figure  4  Ce 3d XPS spectra of catalysts calcinated at different temperatures

    图  5  不同焙烧温度下催化剂的H2-TPR谱图

    Figure  5  H2-TPR profiles of catalysts calcinated at different temperatures

    图  6  催化性能随焙烧温度的变化

    Figure  6  Curve of catalytic performance vs calcination temperature

    表  1  不同焙烧温度下催化剂的Cu 2p XPS和CuLMM AES曲线拟合结果分析

    Table  1  Cu 2p XPS and CuLMM AES curve-fitting analysis results of catalysts calcinated at different temperatures

    Calcination
    temp. t/℃
    BE of Cu 2p3/2 E/eVKE of CuLMM E/eV Area of Cu 2p3/2/% Area of CuLMM/% Cu+
    /%
    Cu0
    /%
    Cu2+Cu+/Cu0Cu+Cu0 Cu2+Cu+/Cu0 Cu+Cu0
    150934.5933.0916.3 -53.946.1100 -46.1 -
    200934.5932.8916.3 -43.856.2100 -56.2 -
    250934.5932.9916.2918.042.657.469.131.946.311.1
    300 -932.5916.2918.0 -10073.027.073.027.0
    350 -932.7916.5918.0 -10064.735. 364.735.3
    400 -932.8916.3918.1 -10060.139.960.139.9
    450 -932.6916.3918.0 -10052.747.352.747.3
    area percentage calculated from Cu 2p3/2;
    area percentage calculated from CuLMM Auger;
    multiply Cu+ in area percentage of CuLMM by Cu+/Cu0 in area percentage of Cu 2p3/2;
    multiply Cu0 in area percentage of CuLMM by Cu+/Cu0 in area percentage of Cu 2p3/2
    下载: 导出CSV

    表  2  不同焙烧温度下催化剂的H2-TPR分析

    Table  2  H2-TPR analysis of catalysts calcinated at different temperatures

    Calcination temperature t/℃150200250300350400450
    H2-consumption m/(mmol·g-1)0.650.520.470.280.220.190.11
    下载: 导出CSV
  • [1] FU Z H, ONO Y. Two-step synthesis of diphenyl carbonate from dimethyl carbonate and phenol using MoO3/SiO2 catalysts[J]. J Mol Catal A:Chem, 1997, 118(3):293-299. doi: 10.1016/S1381-1169(96)00409-8
    [2] ONO Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block[J]. Appl Catal A:Gen, 1997, 155(2):133-166. doi: 10.1016/S0926-860X(96)00402-4
    [3] WANG Y J, ZHAO X Q, YUAN B G, ZHANG B C, CONG J S. Synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol on the supported solid catalyst I. Catalyst preparation and catalytic properties[J]. Appl Catal A:Gen, 1998, 171(2):255-260. doi: 10.1016/S0926-860X(98)00078-7
    [4] LI Z, WANG R Y, ZHENG H Y, XIE K C. Preparation of CuIY catalyst using CuCl2 as precursor for vapor phase oxidative carbonylation of methanol to dimethyl carbonate[J]. Fuel, 2010, 89(7):1339-1343. doi: 10.1016/j.fuel.2009.10.021
    [5] 郑华艳, 任军, 周媛, 牛燕燕, 李忠. Cu+/SiO2-ZrO2催化剂的制备及其催化甲醇氧化羰基化性能[J].燃料化学学报, 2011, 39(4):282-286. doi: 10.1016/S1872-5813(11)60022-4

    ZHENG Hua-yan, REN Jun, ZHOU Yuan, NIU Yan-yan, LI Zhong. Preparation of Cu+/SiO2-ZrO2catalysts for the oxidative carbonylation of methanol to dimethyl carbonate[J]. J Fuel Chem Technol, 2011, 39(4):282-286. doi: 10.1016/S1872-5813(11)60022-4
    [6] 李忠, 朱琼芳, 王瑞玉, 牛燕燕, 郑华艳. Cu/活性炭催化剂:水合肼还原制备及催化甲醇氧化羰基化[J].无机化学学报, 2011, 27(4):718-724. http://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201104021.htm

    LI Zhong, ZHU Qiong-fang, WANG Rui-yu, NIU Yan-yan, ZHENG Hua-yan. Cu supported on activated carbon catalyst prepared by hydrazine hydrate reduction for catalyzing oxidative carbonylation of methanol[J]. Chin J Inorg Chem, 2011, 27(4):718-724. http://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201104021.htm
    [7] ENGELDINGER J, DOMKE C, RICHTER M, BENTRUP U. Elucidating the role of Cu species in the oxidative carbonylation of methanol to dimethyl carbonate on CuY:An in situ spectroscopic and catalytic study[J]. Appl Catal A:Gen, 2010, 382(2):303-311. doi: 10.1016/j.apcata.2010.05.009
    [8] MA X B, LI Z H, WANG B W, XU G H. Effect of catalyst preparation on the oxidative carbonylation of methanol to dimethyl carbonate[J]. React Kinet Catal Lett, 2002, 76 (1):179-187. doi: 10.1023/A:1015690000917
    [9] JIANG R X, WANG S F, ZHAO X Q, WANG Y J, ZHANG C F. The effects of promoters on catalytic properties and deactivation-regeneration of the catalyst in the synthesis of dimethyl carbonate[J]. Appl Catal A:Gen, 2003, 238(1):131-139. doi: 10.1016/S0926-860X(02)00345-9
    [10] 李忠, 文春梅, 王瑞玉, 郑华艳, 谢克昌.醋酸铜热解制备无氯Cu2O/AC催化剂及其催化氧化羰基化[J].高等学校化学学报, 2009, 30(10):2024-2031.

    LI Zhong, WEN Chun-mei, WANG Rui-yu, ZHENG Hua-yan, XIE Ke-chang. Chloride-free Cu2O/AC catalyst prepared by pyrolysis of copper acetate and catalytic oxycarbonylation[J]. Chem J Chin Univ, 2009, 30(10):2024-2031.
    [11] REN J, WANG W, WANG D L, ZUO Z J, LIN J Y, LI Z. A theoretical investigation on the mechanism of dimethyl carbonate formation on Cu/AC catalyst[J]. Appl Catal A:Gen, 2014, 472:47-52. doi: 10.1016/j.apcata.2013.12.006
    [12] 任军, 郭长江, 杨雷雷, 李忠.淀粉基炭负载纳米铜催化合成碳酸二甲酯[J].催化学报, 2013, 34(9):1734-1744. doi: 10.1016/S1872-2067(12)60640-8

    REN Jun, GUO Chang-jiang, YANG Lei-lei, LI Zhong. Synthesis of dimethyl carbonate over starch-based carbon-supported Cu nanoparticles catalysts[J]. Chin J Catal, 2013, 34(9):1734-1744. doi: 10.1016/S1872-2067(12)60640-8
    [13] ZHANG G Q, LI Z, ZHENG H Y, FU T J, JU Y B, WANG Y C. Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol[J]. Appl Catal B:Environ, 2015, 179:95-105. doi: 10.1016/j.apcatb.2015.05.001
    [14] 任军, 王冬蕾, 裴永丽, 秦志峰, 林建英, 李忠.助剂含量对CuLi/AC催化剂结构及甲醇氧化羰基化反应性能的影响[J].高等学校化学学报, 2013, 34(11):2594-2600. http://www.cnki.com.cn/Article/CJFDTOTAL-GDXH201311024.htm

    REN Jun, WANG Dong-lei, PEI Yong-li, QIN Zhi-feng, LIN Jian-ying, LI Zhong. Effects of lithium content on the structural properties and catalytic activities of CuLi/AC catalysts in the oxidative carbonylation of methanol to dimethyl carbonate[J]. Chem J Chin Univ, 2013, 34(11):2594-2600. http://www.cnki.com.cn/Article/CJFDTOTAL-GDXH201311024.htm
    [15] 郑华艳, 郭天玉, 李忠, 孟凡会, 秦瑶.浸渍顺序对CuCe/AC催化剂结构和性能的影响[J].无机化学学报, 2013, 29(12):2575-2581. http://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201312011.htm

    ZHENG Hua-yan, GUO Tian-yu, LI Zhong, MENG Fan-hui, QIN Yao. Effect of impregnation strategy on structure and catalytic performance of CuCe/AC catalyst[J]. Chin J Inorg Chem, 2013, 29(12):2575-2581. http://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201312011.htm
    [16] ESPINóS J P, MORALES J, BARRANCO A, CABALLERO A, HOLGADO J P, GONZáLEZ-ELIPE A R. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2catalysts[J].J Phys Chem B, 2002, 106(27):6921-6929. doi: 10.1021/jp014618m
    [17] TEO J J, CHANG Y, ZENG H C. Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals[J]. Langmuir, 2006, 22(17):7369-7377. doi: 10.1021/la060439q
    [18] WANG W Z, WANG G H, WANG X S, ZHAN Y J, LIU Y K, ZHENG C L. Synthesis and characterization of Cu2O nanowires by a novel reduction route[J]. Adv Mater, 2002, 14(1):67-69. doi: 10.1002/(ISSN)1521-4095
    [19] RAIMONDI F, GEISSLER K, WAMBACH J, WOKAUN A. Hydrogen production by methanol reforming:Post-reaction characterisation of a Cu/ZnO/Al2O3catalyst by XPS and TPD[J]. Appl Surf Sci, 2002, 189(1/2):59-71.
    [20] HE Z, LIN H Q, HE P, YUAN Y Z. Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal, 2011, 277(1):54-63. doi: 10.1016/j.jcat.2010.10.010
    [21] 雷智平, 刘振宇, 郭彦霞. Cu-Ce/AC吸附-催化剂对所吸附苯酚的催化氧化行为的研究[J].燃料化学学报, 2009, 37(1):93-97. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17408.shtml

    LEI Zhi-ping, LIU Zhen-yu, GUO Yan-xia. Catalytic oxidation behavior of phenol adsorbed on Cu-Ce/AC catalyst-sorbent[J]. J Fuel Chem Technol, 2009, 37(1):93-97. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17408.shtml
    [22] REN J, REN M J, WANG D L, LIN J Y, LI Z. Mechanism of microwave-induced carbothermic reduction and catalytic performance of Cu/activated carbon catalysts in the oxidative carbonylation of methanol[J]. J Therm Anal Calorim, 2015, 120(3):1929-1939. doi: 10.1007/s10973-015-4519-y
    [23] RODRIGUES EG, PEREIRA MFR, CHEN X, DELGADOE JJ, ÓRFÁO J J M. Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation[J]. J Catal, 2011, 281(1):119-127. doi: 10.1016/j.jcat.2011.04.008
    [24] SUBBARAMAIAH V, SRIVASTAVA V C, MALL I D. Catalytic activity of Cu/SBA-15 for peroxidation of pyridine bearing wastewater at atmospheric condition[J]. AIChE J, 2013, 59(7):2577-2586. doi: 10.1002/aic.v59.7
    [25] PRIYANKA, SUBBARAMAIAH V, SRIVASTAVA V C, MALL I D. Catalytic oxidation of nitrobenzene by copper loaded activated carbon[J]. Sep Purif Technol, 2014, 125:284-290. doi: 10.1016/j.seppur.2014.01.045
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-26
  • 修回日期:  2016-04-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-06-10

目录

    /

    返回文章
    返回