Ni-Co-P非晶态合金催化香草醛HDO性能的研究

Study on catalytic performance of Ni-Co-P amorphous alloy for HDO of vanillin

  • 摘要: 采用化学还原法合成Ni-P非晶态合金,添加Co元素对非晶态合金进行改性,采用XRD、SEM、XPS、DSC等方法对非晶态合金进行结构与性能的表征。以香草醛加氢脱氧制2-甲氧基-4-甲基苯酚(MMP)为探针考察催化剂的加氢脱氧(HDO)性能。结果表明,Ni与Co之间的协同作用不仅有助于Ni的还原,增加催化剂活性中心数目,而且提高了非晶态合金分散度、无序度和热稳定性。在优化的反应条件下:nCo/(nCo+nNi)(物质的量比)=0.08、H2分压为2.0 MPa、反应温度为150 ℃、反应时间为180 min、催化剂用量为0.05 g,香草醛的转化率达到100%,MMP选择性为82.7%。催化剂循环五次后,香草醛的转化率保持100%,MMP的选择性下降到68.7%。

     

    Abstract: The Ni-P amorphous alloy was synthesized by chemical reduction, modified by adding element Co, and characterized by XRD, SEM, XPS and DSC. The hydrodeoxygenation (HDO) performance of the amorphous alloy was investigated by hydrodeoxygenation of vanillin to 2-methoxy-4-methylphenol (MMP). It is shown that the synergy between Ni and Co not only contributes to the reduction of Ni, increases the number of active centers of the catalyst, but also improves the dispersion, disorder and thermal stability of the amorphous alloy. Under the optimized reaction conditions:nCo/(nCo + nNi)=0.08 (molar ratio), H2 partial pressure of 2.0 MPa, reaction temperature of 150℃, reaction time of 180 min, catalyst dosage of 0.05 g, vanillin conversion and the MMP selectivity can reach 100% and 82.7%, respectively. After 5 cycles of the catalyst, the conversion of vanillin remains 100% and the selectivity of MMP decreases to 68.7%.

     

/

返回文章
返回