碱氮化合物喹啉催化裂化转化规律的研究

碱氮化合物喹啉催化裂化转化规律的研究

  • 摘要: 采用固定床微反活性实验装置,以甲苯、十六烷、四氢萘为溶剂,研究了碱性含氮化合物喹啉的催化裂化转化规律。反应温度、催化剂与原料油的质量比、空速、原料氮含量都影响待生催化剂的氮含量和氮在产物中的分布。催化剂的酸性、烃类溶剂的供氢能力对喹啉裂化有显著影响。催化裂化待生催化剂上的焦炭由烃生焦、吸附氮焦和缩合氮焦组成。提出了喹啉催化裂化的可能转化途径:喹啉通过物理或化学作用吸附于催化剂表面,或在催化剂上脱氢缩合生焦;喹啉烷基化;喹啉加氢生成四氢喹啉,四氢喹啉进一步裂化转化为吡啶、苯胺和氨。

     

    Abstract: Quinoline catalytic cracking was studied on a fixed-bed microactivity test unit by using toluene, cetane, and tetralin as solvent. Reaction temperature, catalyst to oil ratio, weight hourly space velocity and feedstock nitrogen content affected the nitrogen content of spent catalyst and the nitrogen distribution in products. Catalyst acidity and hydrogen donating abilities of hydrocarbon solvent had marked effect on quinoline cracking. The coke on spent catalyst can be divided into three types, hydrocarbons, adsorbed nitrogen compounds, and condensed nitrogen. The possible reaction pathway of quinoline catalytic cracking is put forward. Quinoline could adsorb on catalyst surface by physical or chemical adsorption, or be deposited as coke via dehydrogenation. Quinoline could be converted into alkylquinoline. Quinoline could be hydrogenated into tetrahydroquinoline, which would be cracked into pyridine, aniline and ammonia.

     

/

返回文章
返回