燃煤过程中碱金属迁移规律的模拟研究与预测分析

燃煤过程中碱金属迁移规律的模拟研究与预测分析

  • 摘要: 基于ASPEN PLUS 平台,对燃煤过程中碱金属迁移规律进行了模拟研究和预测。模拟结果表明,在850K~1650K气态碱金属物质随反应温度的升高而增加;1400K以下,气相中以NaCl、KCl为主,Na2SO4蒸气量明显高于K2SO4;1500K以下,气态碱金属释放量随着煤中氯质量分数的增加而增加;一定温度下,气态碱金属质量分数随压力的升高而降低;常压下煤中氯的质量分数0.1%,温度降到972K时气态碱金属的质量分数可降到2.4×10-8;而当氯的质量分数分别为0.05%和0.01%时,为达到同样的气态碱金属质量分数,温度需分别降到990K和1025K。模拟结果为燃煤联合循环发电系统的设计和优化提供了参考依据。

     

    Abstract: The control of the amount of alkali vapors in the flue gas at the gas turbine inlet is very important for the coalfired combined cycle power system. Based on the Gibbs free energy minimization principle of chemical equilibrium, two models of coalfired process and alkali migration were developed using Aspen Plus software to explore the migration mechanisms of alkali metals during coalfired process. Moreover, the effect of conditions on the limit level of alkali vapors were predicted. The model results show that in a wide reactor temperature range from 850K to 1650K, the concentration of alkali vapors increases with increasing the reactor temperature. Below 1400K NaCl vapor and KCl vapor are the major alkali metal species in the gaseous phase, and the concentration of Na2SO4 vapor is much higher than that of K2SO4 vapor. At below 1500K, concentrations of alkali vapors increase with the increase of chlorine in coal. At a constant temperature, concentrations of alkali vapors decrease with increasing the reactor pressure. Under atmospheric pressure, the concentration of alkali vapors is decreased to 2.4×10-8 by weight in 972K with 0.1% chlorine in coal, and when the chlorine in coal are 0.05% and 0.01%, the reactor temperature should be increased to 990K and 1025K to limit concentrations of alkali vapors lower than 2.4×10-8, respectively.

     

/

返回文章
返回