成庄无烟煤大分子结构模型及其分子模拟

Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation

  • 摘要: 利用晋城矿区成庄矿煤的工业分析、元素分析、13C-NMR、XPS等实验结果,构建了其大分子结构模型.模型中,芳香碳以2、3、4环结构为主,最大环数达五个;脂肪碳以甲、乙基侧链及环烷烃的形式存在.九个氧原子分别以七个羰基(主要为醌基)、一个羟基及一个醚氧的型式存在;两个氮原子以吡咯的形式存在.硫原子含量很低,在模型构建中没有体现.采用分子力学(MM)和分子动力学(MD)方法,对成庄煤结构模型进行能量最小化模拟.结果表明,分子内及分子间芳香层片之间的π-π相互作用,使其以近似平行的方式排列;高煤级煤结构中,短程有序的原因主要是分子间芳香层片的定向排列.分子间的氢键能及范德华能使结构达到最稳构型.

     

    Abstract: The macromolecular structure model of Chengzhuang coal was constructed based on the results of proximate and ultimate analysis, 13C-NMR spectrum and XPS spectrum. In the model the numbers of rings in polycyclic aromatic hydrocarbon were distributed between 1 and 5. The aliphatic C atoms existed in the forms of -CH3,-CH2- and cycloalkanes. 9 atoms of O were in the form of C=O, while one in the form of -OH and another one in the form of -O-. 2 atoms of N were in pyrrole, while S atom did not appear in the model because its concentration was lower than 1%. Molecular mechanics (MM) and molecular dynamics (MD) was adopted to simulate the energy-minimum conformation of the model and the results showed that the aromatic layers tended to be parallel by intramolecular or intermolecular π-π interaction and the latter should be one of the main contributors for the short-range ordering of high-rank coal structure. The van der waals energy and hydrogen bond energy contributed to the energy-minimum conformation.

     

/

返回文章
返回