Abstract:
Laboratory experiments and reaction kinetics analysis were conducted to reveal the mechanisms of low temperature oxidation (LTO) reaction of crude oil and oil components in the temperature range from 70 to 120℃. SARA(saturates, aromatics, resins, and asphaltenes)analysis was conducted to study the variations of different oil components before and after LTO reaction. The experiments using pure oil components (i.e.
n-hexadecane, wax, anthracene and asphaltenes) were preformed to investigate the oxidation activity of different oil components. At low temperatures (70~90℃), light oil compounds (
n-hexadecane and anthracene) can be more resistible to the oxidation than heavy asphaltenes and wax. The activation energies of the various components LTO reactions calculated based on the experimental results show that the heavy components, having a relative low activation energy, can be more easily subjected to low temperature oxidation than the light HC components. Heavy oil exhibits a higher oxidation activity than light oils in the LTO reaction, which also means that the heavy oil components is more easily oxidized at low temperatures. The experimental results can provide a basis for the air injection process design in oilfields.