不同载体Ni基催化剂生物质热解气甲烷化反应性能

Methanation of biomass pyrolysis gas over Ni catalyst with different supports

  • 摘要: 采用浸渍法制备了Ni金属负载在不同载体(SiO2、ZrO2、CeO2、Al2O3和Al2O3-CeO2)表面形成的催化剂,研究了水蒸气和载体对生物质热解气甲烷化反应性能的影响。结果表明,随着水蒸气量的增加CO转化率逐渐增大,而甲烷选择性呈现先增加后降低的变化趋势,当nwater/ngas比值为0.26时达到最大。载体Al2O3相比SiO2、ZrO2和CeO2具有更大的比表面积和Ni金属分散度,促进了生物质热解气甲烷化反应活性和选择性。相比于Ni-Al2O3催化剂,Al2O3-CeO2复合载体具有更多的镍金属负载量活性金属分散度,以及最好的低温甲烷化反应性能。在300 ℃的低温条件下,Ni-Al2O3-CeO2催化剂的CO转化率达到97%,CH4增长率达到110%。

     

    Abstract: The supported Ni-based catalysts were prepared by impregnation method. Effects of different supports (SiO2, ZrO2, CeO2, Al2O3 and Al2O3-CeO2) and water vapour on catalyst microstructure and their performance in biomass pyrolysis gas methanation were investigated. The results indicated that CO conversion increased gradually, and the CH4 selectivity increased firstly, and then decreased with the increase of adding water vapor amount. Compared to SiO2, ZrO2 and CeO2, Al2O3 presented higher BET surface area and Ni metal dispersion, which promoted the activity and selectivity for biomass pyrolysis gas methanation. Furthermore, the Al2O3-CeO2 modified Ni-based catalyst showed more nickel metal loading and active metal dispersion comparing to the Ni-Al2O3 catalyst, exhibiting more excellent methanation performances at lower temperature. CO conversion reached 97%, and CH4 growth rate reached 110% over the Ni-Al2O3-CeO2 catalyst at 300 ℃.

     

/

返回文章
返回