N2O在Mg-Fe复合氧化物上的催化分解

Catalytic decomposition of N2O over Mg-Fe mixed oxides

  • 摘要: 用共沉淀法制备了一组Mg-Fe复合氧化物催化剂,用于N2O催化分解,考察了催化剂组成、焙烧温度、负载助剂钾等参数对其催化活性的影响。采用N2物理吸附、X射线衍射、H2-程序升温还原等技术对催化剂进行了结构表征。结果表明,500 ℃焙烧的Mg0.6Fe0.4Fe2O4催化剂对于N2O分解反应有较高活性,而K改性的催化剂活性均有所降低,且K的负载量越高,改性催化剂的活性越低,这是由于负载的K粒子抑制了表面铁物种的还原,降低了催化剂的比表面积。在有氧无水、水氧共存条件下连续反应10 h,Mg0.6Fe0.4Fe2O4的催化活性和稳定性均显著高于FeOx催化剂。

     

    Abstract: A series of MgxFe1-xFe2O4 spinel oxides were prepared and characterized by means of nitrogen physisorption, X-ray diffraction (XRD) and temperature-programmed reduction of hydrogen (H2-TPR). The effect of composition, calcination temperature, and potassium doping on the catalytic activity of the Mg-Fe mixed oxides in N2O decomposition was investigated. The results indicated that the Mg0.6Fe0.4Fe2O4 catalyst calcined at 500 ℃ exhibits highest activity in N2O decomposition. Unexpectedly, the catalyst activity is depressed by the addition of potassium, as the potassium doping may inhibit the reduction of surface iron oxides and reduce the surface area of K-modified catalysts. Long-term tests at 500 ℃ for 10 h also illustrate that Mg0.6Fe0.4Fe2O4 is superior to FeOx catalyst either in the oxygen-alone or in the oxygen-steam concomitant atmosphere.

     

/

返回文章
返回