助剂M(M=Cr、Zn、Y、La)对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响

Effect of promoter M(M=Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol

  • 摘要: 采用顺序浸渍法制备了掺杂助剂MM=Cr、Zn、Y、La)的CuO/CeO2催化剂,并利用XRF、XRD、BET、H2-TPR和XPS等手段对催化剂进行了表征,考察了不同助剂对CuO/CeO2催化剂结构、性质和性能的影响。结果表明,助剂的掺杂主要影响CuO/CeO2催化剂的CuO分散、催化剂的还原性质、CuO与CeO2间的相互作用和催化剂表面氧空穴含量。掺杂助剂Cr和Zn后,提高了CuO在催化剂表面的分散度,使CuO和CeO2间的相互作用加强,表面氧空穴增加,进而使得催化活性提高。而掺杂助剂Y和La后,降低了CuO在催化剂表面的分散度,使CuO和CeO2间的相互作用减弱,表面氧空穴减少,进而使得催化活性降低。其中,掺杂Cr助剂的催化剂催化性能较优,当反应条件为260 ℃,n(CH3OH):n(H2O)=1:1.2,甲醇水蒸气气体空速为1760 h-1时,最终转化率可达100%,重整尾气中CO含量为0.15%,与CuO/CeO2催化剂相比,转化率提高了10%,重整尾气中CO含量降低了0.34%。

     

    Abstract: M/CuO/CeO2 (M=Cr, Zn, Y, La) catalyst was prepared by sequential impregnation method. The catalysts were characterized by XRF, XRD, BET, H2-TPR and XPS. The effects of different promoters on the structure and properties of CuO/CeO2 catalysts were investigated.The results show that the doping of promoters mainly affects the dispersion of CuO, the reduction properties of the catalyst, the interaction between CuO and CeO2, and the oxygen hole content on the surface of the catalyst. After doping additives Cr and Zn, improving the dispersion of CuO on catalysts, and the interaction between CuO and CeO2 strengthens, the surface oxygen holes increase, which in turn increases the catalytic activity. After doping the additives Y and La, decreasing the dispersion of CuO on catalysts, the interaction between CuO and CeO2 is weakened, and the surface oxygen holes are reduced, thus the catalytic activity is reduced. Among them, the catalyst doped with promoter Cr has better catalytic activity. When the reaction conditions are 260℃, n(CH3OH):n(H2O)=1:1.2 and the space velocity of methanol vapor gas is 1760 h-1, the final conversion can reach 100%, the CO content in reforming tail gas is 0.15%. Compared with CuO/CeO2 catalyst, the conversion rate is increased by 10%, and the CO content in reforming tail gas is reduced by 0.34%.

     

/

返回文章
返回