分散型纳米二硫化钼的制备及其对模拟油浆的加氢处理催化性能

Synthesis of dispersed molybdenum disulfide nano-catalysts and their performance in the hydrogenation of simulated oil slurry

  • 摘要: 以二烷基二硫代氨基甲酸钼(Mo-DTC)和六羰基钼(Mo(CO)6)为前驱体、水热法合成了分散型纳米MoS2,采用X-ray射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱分析(XPS)和程序升温脱附法(NH3-TPD)等方法对其进行了表征。利用三种烯烃(辛烯、苯乙烯、反式二苯乙烯)、苯并噻吩和蒽等构建模拟油浆体系,结合气相色谱-质谱(GC-MS)分析,对分散型纳米MoS2的模拟油浆加氢处理催化性能进行了研究。结果表明,不同预处理条件下制备出的催化活性样品均为2H-MoS2,但各样品的结晶度、颗粒尺寸、硫化程度及其酸性质等均有所不同,其中,总酸量差别较小;以Mo-DTC和Mo(CO)6为前驱体的优选硫化条件分别为380℃/30 min和370℃/30 min,所得到的催化剂对烯烃和噻吩的加氢活性较高。其中,Mo-DTC基纳米MoS2催化剂的烯烃加氢饱和转化率高达98.10%,加氢脱硫率为94.51%,而蒽的部分加氢饱和转化率则较低,为29.47%,且无八氢蒽(8HN)或全氢蒽的生成。Mo(CO)6基纳米MoS2催化剂的加氢效果则略差,烯烃加氢饱和转化率为94.01%,加氢脱硫率为89.01%,对蒽的加氢饱和转化率为24.20%,无8HN或全氢蒽的生成。总体而言,由Mo-DTC所制备的MoS2催化剂具有烯烃高效饱和、含硫化合物高效脱硫、芳烃浅度加氢饱和的效果,且油浆加氢处理反应的选择性及催化稳定性均更高。

     

    Abstract: A series of dispersed nano molybdenum disulfide (MoS2) catalysts were prepared with molybdenum dialkyl dithiocarbamate (Mo-DTC) and molybdenum hexacarbonyl (Mo(CO)6) as the precursors by hydrothermal methods and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (NH3-TPD). By using a simulated oil slurry containing three kinds of olefins (octane, styrene and trans-dibenzylethene), benzothiophene and anthracene, the catalytic performance of nano MoS2 in the hydrogenation was investigated, with the help of gas chromatography-mass spectrometry (GC-MS). The results indicate that all the prepared catalysts are in the form of 2H-MoS2; however, their crystallinity, particle size, vulcanization degree, and acid property are influenced by the pretreatment conditions; the preferred vulcanization conditions for the Mo-DTC-and Mo(CO)6-based MoS2 catalysts are 380 ℃/30 min and 370 ℃/30 min, respectively, to achieve a relatively high activity in the hydrogenation of olefins and benzothiophene. Over the Mo-DTC-based nano-MoS2 catalyst, the saturation conversion of olefins hydrogenation is 98.10% and the hydrodesulfurization rate is 94.51%, whereas the saturation conversion of anthracene hydrogenation is 29.47%, without forming octahydroanthracene (8HN) or perhydroanthracene. In contrast, the activity of Mo(CO)6-based nano-MoS2 catalyst is slightly lower, with the saturation conversion of olefins hydrogenation being 94.01% and the hydrodesulfurization rate being 89.01%; similarly, the saturation conversion for anthracene hydrogenation is 24.20%, without 8HN or perhydroanthracene in the product. As a whole, in comparison with the Mo(CO)6-based MoS2 catalyst, the nano MoS2 catalyst derived from Mo-DTC displays higher efficiency in both olefins saturation and sulfur-containing compounds desulfurization, and low degree hydrogenation of aromatic hydrocarbons; moreover, it also exhibits higher hydro-treating selectivity for the catalytic cracking slurry and higher stability during hydrogenation.

     

/

返回文章
返回