留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧方法和焙烧条件对纳米Au/HZSM-5催化剂金粒径和催化性能的影响

艾沙·努拉洪 莫文龙 马凤云

艾沙·努拉洪, 莫文龙, 马凤云. 焙烧方法和焙烧条件对纳米Au/HZSM-5催化剂金粒径和催化性能的影响[J]. 燃料化学学报, 2016, 44(6): 710-717.
引用本文: 艾沙·努拉洪, 莫文龙, 马凤云. 焙烧方法和焙烧条件对纳米Au/HZSM-5催化剂金粒径和催化性能的影响[J]. 燃料化学学报, 2016, 44(6): 710-717.
AISHA· Nulahong, MO Wen-long, MA Feng-yun. Effect of preparation parameters on the gold particle size of Au/HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 710-717.
Citation: AISHA· Nulahong, MO Wen-long, MA Feng-yun. Effect of preparation parameters on the gold particle size of Au/HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 710-717.

焙烧方法和焙烧条件对纳米Au/HZSM-5催化剂金粒径和催化性能的影响

基金项目: 

新疆大学博士启动基金BS130113 209-61370

详细信息
  • 中图分类号: TQ546

Effect of preparation parameters on the gold particle size of Au/HZSM-5

More Information
  • 摘要: 采用负压沉积沉淀法制备了纳米Au/HZSM-5催化剂前体, 研究了深床焙烧和等离子体焙烧两种方法, 以及焙烧温度和焙烧气氛对催化剂中纳米金粒径和催化性能的影响, 并采用ICP、TEM、XRD、UV-vis、XPS等表征方法对催化剂金粒子进行了物化性能表征, 采用合成气羰基化制乙酸甲酯反应表征催化性能。结果表明, 不同焙烧方法和不同焙烧温度及气氛对负载型纳米Au/HZSM-5催化剂中金粒径、形貌、物化性质和催化性能有明显影响。其中, 以等离子体焙烧方法在500℃氮气气氛下制备的纳米1.86%Au/HZSM-5催化剂中的金粒径最小, 为2-5nm。用于催化合成气羰基化制乙酸甲酯反应, 原料中CO的转化率为67%, 乙酸甲酯选择性可达78%。
  • 图  1  脉冲进样小型固定床实验装置示意图

    Figure  1  Diagram of mini-scale pulse reactor

    图  2  不同焙烧温度纳米Au/HZSM-5催化剂的XRD谱图

    Figure  2  XRD patterns of nano-Au/HZSM-5 catalysts after calcination

    图  3  空气气氛下不同焙烧温度纳米Au/HZSM-5沸石催化剂的TEM照片

    Figure  3  TEM images of nano-Au/HZSM-5 catalysts after calcination in air

    (a, a'): air-80℃ (after drying); (b, b'): air-150℃ (after drying); (c, c'): air-170℃ (after drying); (d, d'): air-180℃ (after drying); (e, e'): air-200℃ (after drying); (f, f'): air-250℃ (after calcination); (g, g'): air-300℃ (after calcination); (h, h'): air-400℃ (after calcination); (i, i'): air-500℃ (after calcination); (j, j'): air-600℃ (after calcination); (k, k'): air-700℃ (after calcination)

    图  4  氮气、氩气、氢气500℃下焙烧后纳米Au/HZSM-5催化剂的TEM照片

    Figure  4  TEM images of nano-Au/HZSM-5 catalysts after calcination

    (a): N2; (b): Ar; (c): H2

    图  5  氮气等离子体条件下300、400、500℃焙烧后纳米Au/HZSM-5催化剂TEM照片

    Figure  5  TEM images of nano-Au/HZSM-5 catalysts after calcination under N2 plasma

    (a): 300℃; (b): 400℃; (c): 500℃

    图  6  空气气氛下焙烧的纳米1.86Au/HZSM-5沸石催化剂的UV-vis谱图

    Figure  6  UV-vis spectra of nano-1.86Au/HZSM-5 catalysts

    (a): calcined at 80-250℃; (b): calcined at 300-700℃

    图  7  500℃下不同焙烧气氛的纳米1.86 Au/HZSM-5催化剂UV-vis谱图

    Figure  7  UV-vis spectra of nano-1.86Au/HZSM-5 catalysts prepared under different calcination treatments at 500℃

    图  8  不同焙烧温度的纳米1.86 Au/HZSM-5催化剂XPS谱图

    Figure  8  XPS spectra of nano-1.86Au/HZSM-5 catalysts prepared under different calcination treatments

    图  9  不同温度下合成气在1.86%Au/HZSM-5催化剂上的反应性能

    Figure  9  Syngas conversion (a) and MA selectivity (b) over 1.86% Au/HZSM-5 catalyst at different reaction temperatures

    图  10  350℃时不同方法和条件焙烧1.86%Au/HZSM-5催化剂的合成气羰基化反应性能

    Figure  10  Carbonylation performance of 1.86%Au/HZSM-5 catalysts prepared with different calcination conditions (reaction temperature: 350℃)

    表  1  纳米Au/HZSM-5沸石催化剂的ICP数据

    Table  1  ICP data of nano-Au/HZSM-5 zeolite

    CatalystAnalytical
    element
    Loadings w/%
    theoretical valuemeasured value
    1Au0.300.13
    2Au0.500.37
    3Au1.000.79
    4Au2.001.86
    5Au3.002.06
    下载: 导出CSV

    表  2  不同焙烧气氛对Au/HZSM-5催化剂金粒子粒径的影响

    Table  2  Effect of calcination atmosphere on gold particle size of Au/HZSM-5 catalysts

    Calcination atmosphereCalcination atmosphere (500℃ 4h)Nitrogen plasma (3h)
    airN2ArH2400℃500℃
    d/nm8-253-205-155-30 5-102-5
    下载: 导出CSV
  • [1] HARUTA M, KOBAYASHI T, SANO H, YAMADA N. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0℃[J]. Chem Lett, 1987, 16(2):405-408. doi: 10.1246/cl.1987.405
    [2] PESTRYAKOV A, BOGDANCHIKOVA N, SIMAKOV A, TUZOVSKAYA I, JENTOFT F, MAFISA M, DIAZ A. Catalytically active gold clusters and nanoparticles for CO oxidation[J]. Surf Sci, 2007, 601(18):3792-3795. doi: 10.1016/j.susc.2007.04.012
    [3] SIMAKOV A, TUZOSKAYA I, BOGDANCHIKOVA N, PESTRYAKOV A, AVALOS M, FARIAS M H, MAFISA M, SMOLENTSEVA E. Influence of sodium on activation of gold species in Y-zeolites[J]. Catal Commun, 2008, 9(6):1277-1281. doi: 10.1016/j.catcom.2007.11.027
    [4] 丁孝涛, 张培青, 安立敦, 祁彩霞.载金微孔分子筛催化剂研究进展[J].分子催化, 2010, 24(1):93-98. http://www.cnki.com.cn/Article/CJFDTOTAL-FZCH201001020.htm

    DING Xiao-tao, ZHANG Pei-qing, AN Li-dun, QI Cai-xia. Progress in research of microporous zeolites supported nano-gold catalysts[J]. J Mol Catal, 2010, 24(1):93-98. http://www.cnki.com.cn/Article/CJFDTOTAL-FZCH201001020.htm
    [5] BLOCK B P, BAILAR J C. The reaction of gold (Ⅲ) with some bidentate co rdinating groups1[J]. J Am Chem Soc, 1951, 73(10):4722-4725. doi: 10.1021/ja01154a071
    [6] ZHENG N, FAN J, STUCKY G D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals[J].J Am Chem Soc, 2006, 128(20):6550-6551. doi: 10.1021/ja0604717
    [7] ZHENG N, STUCKY G D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts[J]. J Am Chem Soc, 2006, 128(44):14278-14280. doi: 10.1021/ja0659929
    [8] TUZOSKAYA I, BOGDANCHIKOVA N, SIMAKOV A, JURIN V, PESTRYAKOV A, AVALOS M, FARIAS M H. Structure and electronic states of gold species in mordenites[J]. Chem Phys, 2007, 338(1):23-32. doi: 10.1016/j.chemphys.2007.07.026
    [9] PESTRYAKOV A, TUZOSKAYA I, SMOLENTSEVA E, BOGDANCHIKOVA N, JENTOFT F, KNOP-GERICKE A. Formation of gold nanoparticles in zeolites[J]. Int J Mod Phys B, 2005, 19(15/17):2321-2326.
    [10] WANG Z, XIE Y, LEIU C. Synthesis and characterization of noble metal (Pd, Pt, Au, Ag) nanostructured materials confined in the channels of mesoporous SBA-15[J]. J Phy Chem C, 2008, 112(50):19818-19824. doi: 10.1021/jp805538j
    [11] LI Y, JANG B W L. Non-thermal RF plasma effects on surface properties of Pd/TiO2 catalysts for selective hydrogenation of acetylene[J]. Appl Catal A:Gen, 2011, 392(1/2):173-179. https://www.researchgate.net/publication/257373634_Non-thermal_RF_plasma_effects_on_surface_properties_of_PdTiO2_catalysts_for_selective_hydrogenation_of_acetylene
    [12] LIU X Y, MOU C Y, LEE S, LI Y N, SECREST J, JANG B W L. Room temperature O2 plasma treatment of SiO2 supported Au catalysts for selective hydrogenation of acetylene in the presence of large excess of ethylene[J]. J Catal, 2012, 285(1):152-159. doi: 10.1016/j.jcat.2011.09.025
    [13] SOBCZAK I, RYDZ M, ZIOLEK M. The effect of alkali metal on the surface properties of potassium doped Au-Beta zeolites[J]. Mater Res Bull, 2013, 48(2):795-801. doi: 10.1016/j.materresbull.2012.11.063
    [14] 秦明磊.氢等离子体法制备金属磷化物及其加氢脱硫催化性能研究.大连:大连理工大学, 2011.

    QIN Ming-lei. Prepration of metal phosphides by hydrogen plasma reduction and their catalytic performance in hydrodesulfurization. Dalian:Dalian University of Technology, 2011.
    [15] 谢克昌, 李忠.甲醇及其衍生物[M].北京:化学工业出版社, 2002.

    XIE Ke-chang, LI Zhong. Methanol and its Ramifications[M]. Beijing:Chemical Industry Press, 2002.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  10
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-17
  • 修回日期:  2016-03-18
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-06-10

目录

    /

    返回文章
    返回