中温煤沥青基碳量子点的制备与结构解析

Preparation and structure analysis of medium temperature coal tar pitch-based carbon quantum dots

  • 摘要: 以中温煤沥青为碳源,采用HNO3预处理结合球磨过程及双氧水氧化刻蚀的方法制备沥青基荧光碳量子点,以CQDs的收率和荧光量子产率为目标,获得最优制备条件:反应时间6 h、H2O2加入量100 mL(c-CQDs),此时,CQDs收率和荧光量子产率分别为6.3%和11.2%,且尺寸均匀、粒径分布在4-14 nm。延长反应时间至8 h(a-CQDs),碳量子点团聚;H2O2用量增加至120 mL(b-CQDs)则导致碳量子点氧化过度,颗粒小且杂乱无章。对不同条件下所制备的CQDs进行XPS、红外光谱、热重、13C NMR、Raman和晶相分析,探究反应条件对CQDs结构的影响规律。结果表明,就碳含量而言,a-CQDs > b-CQDs > c-CQDs,氧元素含量则为b-CQDs > c-CQDs > a-CQDs。各CQDs结构中C主要以芳碳形式存在,c-CQDs的C=O、O-C=O含量最高,而b-CQDs的C-O含量最高,13C NMR分析发现CQDs中表征平均芳环尺寸大小的Xb约为0.5,相应地,其平均芳环数约为3。

     

    Abstract: The carbon quantum dots (CQDs) were prepared by HNO3 pretreatment combined with ball milling and oxidative stripping by hydrogen peroxide with medium temperature coal tar pitch as the carbon source. In order to determine the suitable reaction conditions, the effects of oxidation time and the amount of hydrogen peroxide on the structure and properties of CQDs were investigated with the yield of CQDs and fluorescence quantum yield as targets. Under the optimum condition with an operating reaction time of 6 h and a H2O2 dosage of 100 mL, the respectively highest yield of CQDs and fluorescence quantum yield of 6.3% and 11.2% is obtained, and the prepared sample is denoted as c-CQDs. Meanwhile, the sample particle size is uniform and in the range of 4-14 nm. When the reaction time is extended to 8 h, the carbon quantum dots (a-CQDs) grow larger because of agglomeration. As the amount of H2O2 increases to 120 mL, the size of carbon quantum dots (b-CQDs) becomes smaller and disorder due to excessive oxidation. Then, the effects of reaction conditions on the structure of CQDs were investigated by XPS, TG-DTG, 13C NMR, Raman and XRD. The results show that the carbon content follows the order of a-CQDs > b-CQDs > c-CQDs, while the content of oxygen is b-CQDs > c-CQDs > a-CQDs. According to XPS analysis, the major form of carbon in CQDs is the aromatic carbon. It is noted that the maximum amount of C=O and O-C=O is obtained with the c-CQDs, while the higest value of C-O appears with the b-CQDs. The Xb characterized by 13C NMR characterization illustrates that the average aromatic ring size is about 0.5, and correspondingly, the average number of aromatic rings is about 3.

     

/

返回文章
返回