留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质中矿物质在气化条件下的演变行为研究

曹琴 黄胜 吴诗勇 吴幼青 高晋生

曹琴, 黄胜, 吴诗勇, 吴幼青, 高晋生. 生物质中矿物质在气化条件下的演变行为研究[J]. 燃料化学学报, 2016, 44(6): 668-673.
引用本文: 曹琴, 黄胜, 吴诗勇, 吴幼青, 高晋生. 生物质中矿物质在气化条件下的演变行为研究[J]. 燃料化学学报, 2016, 44(6): 668-673.
CAO Qin, HUANG Sheng, WU Shi-yong, WU You-qing, GAO Jin-sheng. Evolution behaviors of mineral matters in biomass under gasification conditions[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 668-673.
Citation: CAO Qin, HUANG Sheng, WU Shi-yong, WU You-qing, GAO Jin-sheng. Evolution behaviors of mineral matters in biomass under gasification conditions[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 668-673.

生物质中矿物质在气化条件下的演变行为研究

基金项目: 

国家自然科学基金 21506060

详细信息
  • 中图分类号: TQ53

Evolution behaviors of mineral matters in biomass under gasification conditions

More Information
  • 摘要: 以稻秸秆和玉米秸秆为原料, 考察了弱还原性气氛以及550-1300℃生物质中矿物质的变化, 并采用FactSage软件对生物质中矿物质在高温下的演变行为进行了模拟。结果表明, 生物质灰中Na和K元素的存在形式相对稳定, 部分以气态氯化物的形式挥发出去, 部分存在于低熔点硅酸盐或硫酸盐中; Si元素与Ca、Fe、Mg和Al四种元素形成的硅酸盐的变化形式较多, 主要形成辉石、橄榄石和黄长石三类物质, 随着温度的升高, 部分辉石会转化为橄榄石与黄长石, 此三类物质相互作用易形成熔点较低的共熔体而导致矿物质的熔融。方石英和莫来石是导致稻秸秆流动温度高于玉米秸秆的主要原因, 莫来石最终转化为斜铁辉石、铁尖晶石和钙长石等熔点较低的矿物质。
  • 图  1  不同热处理温度下稻秸秆灰的XRD谱图

    Figure  1  XRD patterns of the rice straw ash produced at different temperatures

    Q: quartz [SiO2]; C: cristobalite [SiO2]; Sy: sylvine [KCl]; Co: calcium oxide [CaO]; Wh: whitlockite [Ca3(PO4)2]; N: nepheline [NaAlSiO4]; Mo: monticellite [CaMgSiO4]; E: enstatite [MgSiO3]; Ce: clinoenstatite [MgSiO3]; Cf: clinoferrosilite [FeSiO3]; A: akermanite [Ca2MgSi2O7]; Si: sillimanite [Al2SiO5]; K: kaliophilite [KAlSiO4]; Cs: calcium silicate [CaSiO3]; G: gehlenite [CaAl2SiO7]; Cor: cordierite [Mg2Al4Si5O18]; Mu: mullite [Al6Si2O13]

    图  2  不同热处理温度下玉米秸秆灰的XRD谱图

    Figure  2  XRD patterns of the corn stalk ash produced at different temperatures

    Q: quartz [SiO2]; C: cristobalite[SiO2]; Sy: sylvine [KCl]; K: kalsilite [KAlSiO4]; Co: calcium oxide [CaO]; Wo: wollastonite [CaSiO3]; Pas: potassium aluminum silicate eutectic [K0.85Al0.85Si0.15O2]; Wh: whitlockite [Ca3(PO4)2]; Ds: disodium sulfate[Na2SO4]; Ps: potassium silicate[K2Si2O5]; Fo: forsterite[Mg2SiO4]; Fa: fayalite[Fe2SiO4]; D: diopside[CaMgSi2O6]; Ce: clinoenstatite[MgSiO3]; Cf: clinoferrosilite[FeSiO3]

    图  3  稻秸秆灰的FactSage模拟图

    Figure  3  FactSage simulation of rice straw ash

    图  4  玉米秸秆灰的FactSage模拟图

    Figure  4  FactSage simulation of corn stalk ash

    表  1  生物质的工业分析与元素分析

    Table  1  Proximate and ultimate analysis of biomass

    SampleProximate analysis wd/%Ultimate analysis wd/%
    A VFC CHStN
    DJG20.1472.817.05 43.915.750.151.37
    YMJG4.2772.0023.73 46.915.240.121.28
    下载: 导出CSV

    表  2  生物质灰的组成

    Table  2  Ash analysis of biomass

    SampleComponent w/%
    Na2OK2OCaOMgOFe2O3Al2O3SiO2ClSO3P2O5TiO2
    DJG1.9110.805.143.371.302.2966.602.612.362.640.12
    YMJG0.4126.4314.269.590.930.9936.684.132.523.740.05
    下载: 导出CSV

    表  3  生物质灰熔融特征温度

    Table  3  Ash fusion temperatures of biomass

    SampleTemperature t/℃
    DTSTHTFT
    DJG826101011881269
    YMJG976103310481076
    下载: 导出CSV

    表  4  稻秸秆中矿物质在高温下可能发生的反应[9-11]

    Table  4  Possible reactions of rice straw mineral matters at high temperatures[9-11]

    Temperature t/℃Possible reaction
    550-800quartz [SiO2]→cristobalite [SiO2], Na2O+Al2O3+2SiO2→2NaAlSiO4, 3CaO+P2O5→Ca3(PO4)2,
    Fe2O3+CO→2FeO+CO2, FeO+SiO2→FeSiO3, MgO+SiO2→MgSiO3, CaO+ MgSiO3→CaMgSiO4
    800-900Al2O3+SiO2→Al2SiO5, K2O+Al2O3+2SiO2→2KAlSiO4,
    CaO+SiO2→CaSiO3, CaSiO3+ CaO→Ca2SiO4, Ca2SiO4+MgSiO3→Ca2MgSi2O7
    900-1000Ca2SiO4+Al2O3→Ca2Al2SiO7, 2MgO+2Al2O3+5SiO2→Mg2Al4Si5O18
    1000-1100enstatite [MgSiO3]→clinoenstatite [MgSiO3]
    1100-12002Al2SiO5+Al2O3→Al6Si2O13
    1200-1300Al6Si2O13+5FeO→2FeSiO3+3FeAl2O4, Al6Si2O13+CaO→CaAl2Si2O8+2Al2O3
    下载: 导出CSV

    表  5  玉米秸秆中矿物质在高温下可能发生的反应[9]

    Table  5  Possible reactions of corn stalk mineral matters at high temperatures[9]

    Temperature t/℃Possible reaction
    550-800puartz [SiO2]→cristobalite [SiO2], CaO+SiO2→CaSiO3, 3CaO+P2O5→Ca3(PO4)2,
    K2O+Al2O3+2SiO2→2KAlSiO4, K2O+SiO2→K2Si2O5, Fe2O3+CO→2FeO+CO2,
    FeO+SiO2→FeSiO3, FeO+ FeSiO3→Fe2SiO4, MgO+SiO2→MgSiO3, CaSiO3+ MgSiO3→CaMgSi2O6
    800-900Al2O3+SiO2→Al2SiO5, K2O+Al2O3+2SiO2→2KAlSiO4, Na2O+SO3→Na2SO4, MgO+MgSiO3→Mg2SiO4
    900-11000.15KAlSiO4+0.35K2O+0.35Al2O3→K0.85Al0.85Si0.15O2
    下载: 导出CSV
  • [1] XIAO R R, CHEN X L, WANG F C, YU G S. The physicochemical properties of different biomass ashes at different ashing temperatures[J]. Renew Energy, 2011, 36:244-249. doi: 10.1016/j.renene.2010.06.027
    [2] 马志斌, 白宗庆, 白进, 李文, 郭振兴.高温弱还原气氛下高硅铝比煤灰变化行为的研究[J].燃料化学学报, 2012, 40(3):279-285. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17897.shtml

    MA Zhi-bin, BAI Zong-qing, BAI Jin, LI Wen, GUO Zhen-xing. Evolution of coal ash with high Si/Al ratio under reducing atmosphere at high temperatures[J]. J Fuel Chem Technol, 2012, 40(3):279-285. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17897.shtml
    [3] 白进, 李文, LI Chun-zhu, 白宗庆, 李保庆.高温下煤中矿物质对气化反应的影响[J].燃料化学学报, 2009, 37(2):134-138. doi: 10.1016/S1872-5813(09)60014-1

    BAI Jin, LI Wen, LI Chun-zhu, BAI Zong-qing, LI Bao-qing. Influences of mineral matter on high temperature gasification of coal char[J]. J Fuel Chem Technol, 2009, 37(2):134-138. doi: 10.1016/S1872-5813(09)60014-1
    [4] RATALE H M, DAVID F, COLIN R W, PETRUS C P, LI Z S. Behaviour of coal mineral matter in sintering and slagging of ash during the gasification process[J]. Fuel Process Technol, 2011, 92:1426-1433. doi: 10.1016/j.fuproc.2011.03.002
    [5] DU S L, YANG H P, QIAN K Z, WANG X H, CHEN H P. Fusion and transformation properties of the inorganic components in biomass ash[J]. Fuel, 2014, 117:1281-1287. doi: 10.1016/j.fuel.2013.07.085
    [6] LIU B, HE Q H, JIANG Z H, XU R F, HU B X. Relationship between coal ash composition and ash fusion temperatures[J]. Fuel, 2013, 105:293-300. doi: 10.1016/j.fuel.2012.06.046
    [7] 贾明生, 张乾熙.影响煤灰熔融性温度的控制因素[J].煤化工, 2007, 3:1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-MHGZ200703000.htm

    JIA Ming-sheng, ZHANG Qian-xi. Key factors affecting fusion temperature of coal ash[J]. Coal Chem Ind, 2007, 3:1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-MHGZ200703000.htm
    [8] THY P, JENKINS B M, GRUNDVIG S, SHIRAKI R, LESHER C E. High temperature elemental losses and mineralogical changes in common biomass ashes[J]. Fuel, 2006, 85:783-795. doi: 10.1016/j.fuel.2005.08.020
    [9] 李文, 白进.煤的灰化学[M].北京:科学出版社, 2013.

    LI Wen, BAI Jin. Chemistry of Ash Form Coal[M]. Beijing:Science Press, 2013.
    [10] 乌晓江, 张忠孝, 周托, 陈玉爽, 陈国艳, 陆成, 黄凤豹.气化条件下混煤熔融特性及矿物质演变特性[J].燃烧科学与技术, 2010, 16(6):508-514. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201006007.htm

    WU Xiao-jiang, ZHANG Zhong-xiao, ZHOU Tuo, CHEN Yu-shuang, CHEN Guo-yan, LU Cheng, HUANG Feng-bao. Ash fusion characteristics and mineral evolvement of blended ash under gasification condition[J]. J Combust Sci Technol, 2010, 16(6):508-514. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201006007.htm
    [11] WU X J, ZHANG Z X, CHEN Y S, ZHOU T, FAN J J, PIAO G L, KOBAYASHI N, MORI S, ITAYA Y. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Process Technol, 2010, 91:1591-1600. doi: 10.1016/j.fuproc.2010.06.007
    [12] CHAKRAVARTY S, MOHANTY A, BANERJEE A, TRIPATHY R, MANDAL G K, BASARIYA M R, SHARMA M. Composition, mineral matter characteristics and ash fusion behavior of some Indian coals[J]. Fuel, 2015, 150:96-101. doi: 10.1016/j.fuel.2015.02.015
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  2
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-02
  • 修回日期:  2016-03-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-06-10

目录

    /

    返回文章
    返回