留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaO/MgO modified perovskite type oxides for chemical-looping steam reforming of methane

ZHAO Kun HE Fang HUANG Zhen WEI Guo-qiang ZHEN GAn-qing LI Hai-bin ZHAO Zeng-li

赵坤, 何方, 黄振, 魏国强, 郑安庆, 李海滨, 赵增立. CaO/MgO负载的钙钛矿型氧化物用于甲烷化学链蒸汽重整[J]. 燃料化学学报, 2016, 44(6): 680-688.
引用本文: 赵坤, 何方, 黄振, 魏国强, 郑安庆, 李海滨, 赵增立. CaO/MgO负载的钙钛矿型氧化物用于甲烷化学链蒸汽重整[J]. 燃料化学学报, 2016, 44(6): 680-688.
ZHAO Kun, HE Fang, HUANG Zhen, WEI Guo-qiang, ZHEN GAn-qing, LI Hai-bin, ZHAO Zeng-li. CaO/MgO modified perovskite type oxides for chemical-looping steam reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 680-688.
Citation: ZHAO Kun, HE Fang, HUANG Zhen, WEI Guo-qiang, ZHEN GAn-qing, LI Hai-bin, ZHAO Zeng-li. CaO/MgO modified perovskite type oxides for chemical-looping steam reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 680-688.

CaO/MgO负载的钙钛矿型氧化物用于甲烷化学链蒸汽重整

基金项目: 

The project was supprted by the National Natural Science Foundation of China 51406208,51406214

and the Science & Technology Research Project of Guangdong Province 2013B050800008

详细信息
  • 中图分类号: TK6

CaO/MgO modified perovskite type oxides for chemical-looping steam reforming of methane

Funds: 

The project was supprted by the National Natural Science Foundation of China 51406208,51406214

and the Science & Technology Research Project of Guangdong Province 2013B050800008

More Information
  • 摘要: 甲烷化学链蒸汽重整(Chemical-looping steam methane reforming,CL-SMR)是基于化学链燃烧的概念而提出的一种新颖的技术。在重整反应器中,甲烷与载氧体中的晶格氧发生部分氧化反应生成合成气(H2/CO物质的量比为2.0),还原后的载氧体进入到水蒸气反应器中,与水蒸气反应恢复晶格氧的同时生成H2。以钙钛矿型氧化物LaFeO3为载氧体用于甲烷化学链蒸气重整过程,同时通过碱金属CaO和MgO对LaFeO3进行负载,以增大载氧体的比表面积、热稳定性和抗积炭能力。通过X射线衍射(XRD)、H2程序升温还原(H2-TPR)、BET比表面积分析(BET)和X光电子能谱(XPS)对载氧体进行表征。结果表明,三种载氧体均表现出较高的反应活性和合成气选择性,循环后仍能保持钙钛矿的结构。从反应性能、选择性和抗积炭能力等方面综合考虑,LaFeO3-CaO的效果最好,五次循环后具有很好的再生性。
  • Figure  1  CL-SMR for syngas and hydrogen production

    Figure  2  XRD patterns of oxygen carriers of (a) fresh (b) regenerated

    ●: orthorhombic phase; □: La2O3; ◆: CaO; ◇: MgO

    Figure  3  Hydrogen-temperature programmed reduction profiles

    Figure  4  La 3d and Fe 2p XPS spectra of the three samples

    Figure  5  O 1s XPS patterns of three samples

    Figure  6  Gaseous products in methane reduction step

    ■: H2; ●: CH4; ▲: CO; : CO2

    Figure  7  Catalytic performance of oxygen carriers for methane selective oxidation

    Figure  8  Gaseous products in steam oxidation step

    ■: H2; ●: CO; ▲: CO2

    Figure  9  Catalytic performance of LF-CaO in five successive recycles

    (a)methane reduction step (b) steam oxidation step ■: CH4 conversion; ●: CO selectivity; ▲: H2 selectivity

    Table  1  Position and area percentage of the major reduction peaks for the three samples

    Sample Peak position t/℃ Fractional peak area /%
    LF 515 3.3
    702 96.7
    LF-CaO 403 41.8
    545 8.3
    640 49.9
    LF-MgO 435 2.9
    560 45.4
    780 51.7
    下载: 导出CSV

    Table  2  Specific surface area of perovskites

    Oxygen carriers LF LF-CaO LF-MgO
    Specific surface area A/(m2·g-1) 3.5 20.3 21.7
    Average pore diameter d/nm 28.4 3.7 11.2
    下载: 导出CSV

    Table  3  Surface elemental composition and relative proportion for the samples measured by XPS

    Oxygen carrier Surface compositions /%
    La Fe Ca Mg OI OII OIII
    LF 20.2 7.7 - - 27.3 17.1 27.7
    LF-CaO 13.7 5.5 7.8 - 24.8 26 22.2
    LF-MgO 15.4 5.4 - 9.6 15.6 27.2 26.7
    下载: 导出CSV
  • [1] GO K S, SON S R, KIM S D, KANG K S, PARK C S. Hydrogen production from two-step steam methane reforming in a fluidized bed reactor[J]. Int J Hydrogen Energy, 2009,34:1301-1309. doi: 10.1016/j.ijhydene.2008.11.062
    [2] ZHU X, WANG H, WEI Y G, LI K Z, CHENG X M. Hydrogen and syngas production from two-step steam reforming of methane using CeO2 as oxygen carrier[J]. J Nat Gas Chem, 2011,20(3):281-286. doi: 10.1016/S1003-9953(10)60185-5
    [3] 李然家, 余长春, 代小平, 沈师孔. 用晶格氧为氧源的甲烷部分氧化制合成气[J]. 催化学报, 2002,23(4):381-387. https://www.researchgate.net/publication/287915640_Partial_oxidation_of_methane_to_synthesis_gas_using_lattice_oxygen_instead_of_molecular_oxygen

    LI Ran-jia, YU Chang-chun, DAI Xiao-ping, SHEN Shi-kong. Partial oxidation of methane to synthesis gas using lattice oxygen instead of molecular oxygen[J]. Chin J Catal, 2002,23(4):381-387. https://www.researchgate.net/publication/287915640_Partial_oxidation_of_methane_to_synthesis_gas_using_lattice_oxygen_instead_of_molecular_oxygen
    [4] LI R J, YU C C, ZHU G R, SHEN S K, ZHANG Z X. Partial oxidation of natural gas to synthesis gas using lattice oxygen from A FeO3 (A=La, Nd, Sm, Eu) perovskite[J]. Chem Eng Oil Gas, 2004,33:5-8. https://www.researchgate.net/publication/286896492_Partial_oxidation_of_methane_to_synthesis_gas_using_lattice_oxygen
    [5] DAI X P, YU C C, LI R J, WU Q, SHI K J, HAO Z P. Effect of calcination temperature and reaction conditions on methane partial oxidation using lanthanum-based perovskite as oxygen donor[J]. J Rare Earths, 2008,26(3):341-346. doi: 10.1016/S1002-0721(08)60092-7
    [6] MAGNUS R, ANDERS L, TOBIAS M, CHEN D, ANDERS H and ERLEND B. Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming; LaxSr1-xFeyCo1-yO3-δ perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4[J]. Int J Greenh Gas Con, 2008,2(1):21-36. doi: 10.1016/S1750-5836(07)00107-7
    [7] DAI X P, YU C C, WU Q. Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9Co0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane[J]. J Nat Gas Chem, 2008,17(4):415-418. doi: 10.1016/S1003-9953(09)60019-0
    [8] 赵坤, 何方, 黄振, 郑安庆, 赵增立. La1-xSrxFeO3钙钛矿型氧化物中的晶格氧用于甲烷部分氧化制合成气[J].催化学报, 2014,35(7):1196-1205. doi: 10.1016/S1872-2067(14)60084-X

    ZHAO K, HE F, HUANG Z, ZHENG A Q, LI H B, ZHAO Z L. La1-xSrxFeO3 perovskites as oxygen carriers for the partial oxidation of methane to syngas[J]. Chin J Catal, 2014,35(7):1196-1205. doi: 10.1016/S1872-2067(14)60084-X
    [9] ZHAO K, HE F, HUANG Z, ZHENG A Q, LI H B, ZHAO Z L. Three-dimensionally ordered macroporous LaFeO3 perovskites for chemical-looping steam reforming of methane[J]. Int J Hydrogen Energy, 2014,39(7):3243-3252. doi: 10.1016/j.ijhydene.2013.12.046
    [10] LI K Z, WANG H, WEI Y G, YAN D X. Partial oxidation of methane to syngas with air by lattice oxygen transfer over ZrO2-modified Ce-Fe mixed oxides[J]. Chem Eng J, 2011,173(2):574-582. doi: 10.1016/j.cej.2011.08.006
    [11] ARYA S, NATHAN G, HUANG Y, CHEN Y, LI F. Fe2O3@LaxSr1-xFeO3 core-shell redox catalyst for methane partial oxidation[J]. Chem Cat Chem, 2014,6:790-799.
    [12] ROSSETTI I, FORNI L. Catalytic flameless combustion of methane over perovskites prepared by flame-hydrolysis[J]. Appl Catal B:Environ, 2001,33(4):345-352. doi: 10.1016/S0926-3373(01)00194-1
    [13] HE F, LI X A, ZHAO K, HUANG Z, WEI G Q, LI H B. Catalytic flameless combustion of methane over perovskites prepared by flame-hydrolysis[J]. Fuel, 2013,108:465-473. doi: 10.1016/j.fuel.2012.11.035
    [14] LI K Z, WANG H, WEI Y G, YAN D X. Direct conversion of methane to synthesis gas using lattice oxygen of CeO2-Fe2O3 complex oxides[J]. Chem Eng J, 2010,156(3):512-518. doi: 10.1016/j.cej.2009.04.038
    [15] PRITI V G, RAJESH B B. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization[J]. Mater Chem Phys, 2010,119(1/2):324-329. https://www.researchgate.net/publication/248264027_Pure_phase_LaFeO_3_perovskite_with_improved_surface_area_synthesized_using_different_routes_and_its_characterization
    [16] MA H Q, TAN X, ZHU H M, ZHANG J Y, ZHANG L. XPS Characterization of La1-xCexFeO3 perovskite as high-temperture water-gas shift catalysts[J]. J Chin Rare Earth Soc, 2003,21(4):445-448.
    [17] LI X, ZHANG H B, LIU X X, LI S J, ZHAO M Y. XPS study on O(1s) and Fe(2p) for nanocrystalline composite oxide LaFeO3 with the perovskite structure[J]. Mater Chem Phys, 1994,38:355-362. doi: 10.1016/0254-0584(94)90213-5
    [18] KEE Y K, HYUN S R, YU T S, DONG J S, WANG L Y, SEUNG B P. Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process[J]. Appl Catal A:Gen, 2008,340(2):183-190. doi: 10.1016/j.apcata.2008.02.009
    [19] QUINCOCES C E, DICUNDO S, ALVAREZ A M, GONZALEZ M G. Effect of addition of CaO on Ni/Al2O3 catalysts over CO2 reforming of methane[J]. Mater Lett, 2001,50(1):21-27. doi: 10.1016/S0167-577X(00)00406-7
    [20] CHOUDHARY V R, UPHADE B S, MAMMAN A S. Large enhancement in methane-to-syngas conversion activity of supported Ni catalysts due to precoating of catalyst supports with MgO, CaO or rare-earth oxide[J]. Catal Lett, 1995,32(3-4):387-390. doi: 10.1007/BF00813233
    [21] DUANE D M, RANJANI S. Fluidized-bed and fixed-bed reactor testing of methane chemical looping combustion with MgO-promoted hematite James Poston[J]. Appl Energy, 2015,146:111-121. doi: 10.1016/j.apenergy.2015.02.047
    [22] HU J B, YU C L, ZHOU X C. Research progress of carbon deposition on catalysts during the partial oxidation of methane[J]. Nonferrous Met Sci Eng, 2012,3(2):5-11.
    [23] YU C L, XU H Y, GE Q J. Characterization of the metallicphase of Zn-doped Pt and Pt-Sn catalysts for propane dehydrogenation[J]. J Mol Catal A, 2007,266:80-89. doi: 10.1016/j.molcata.2006.10.025
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  42
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-07
  • 修回日期:  2016-03-07
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-06-10

目录

    /

    返回文章
    返回