Sr掺杂对CaO(100)表面吸附甲醇影响的分子模拟

Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface

  • 摘要: 借助分子模拟手段,研究了锶掺杂对氧化钙表面甲醇吸附行为的影响。构建了甲醇在CaO(100)和CaO(100)-Sr表面吸附的模型,计算了甲醇在氧化钙表面的吸附能和解离活化能,分析了甲醇在氧化钙表面成键的态密度以及锶掺杂前后甲醇在氧化钙表面电荷布局和差分电荷密度,评估了锶掺杂量对氧化钙表面甲醇吸附性能的影响。结果表明,锶掺杂能够显著强化氧化钙对甲醇的吸附性能,降低甲醇的解离活化能,且吸附性能随锶掺杂量的增加而增强;甲醇在氧化钙表面吸附时活化,锶掺杂后活化程度增加。

     

    Abstract: The influence of strontium doping on the adsorption of methanol on calcium oxide surface was investigated by molecular simulation. The model for methanol adsorption onto the CaO(100) and CaO(100)-Sr surfaces was constructed; the adsorption energy and activation energy were then calculated and the density of states was portrayed for the methanol bond on the calcium oxide surface. The methanol activation degrees on the calcium oxide surface before and after strontium doping were then compared by analyzing the Mulliken atomic charge population and deformation density. The results illustrate that the adsorption of methanol onto the calcium oxide surface can be significantly enhanced through the strontium doping; moreover, the enhancement increases with an increase in the doping content of strontium. After doping calcium oxide with strontium, the energy required for methanol activation is reduced; as a result, the strontium doping can also enhance the activation degree of methanol, as methanol is activated upon adsorption onto the calcium oxide surface.

     

/

返回文章
返回