留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载型Pt/CeO2-Al2O3催化剂的制备及其脱氢性能

赵欣 何峰 熊果 李功华 王威燕 李文松 杨运泉

赵欣, 何峰, 熊果, 李功华, 王威燕, 李文松, 杨运泉. 负载型Pt/CeO2-Al2O3催化剂的制备及其脱氢性能[J]. 燃料化学学报, 2016, 44(6): 718-725.
引用本文: 赵欣, 何峰, 熊果, 李功华, 王威燕, 李文松, 杨运泉. 负载型Pt/CeO2-Al2O3催化剂的制备及其脱氢性能[J]. 燃料化学学报, 2016, 44(6): 718-725.
ZHAO Xin, HE Feng, XIONG Guo, LI Gong-hua, WANG Wei-yan, LI Wen-song, YANG Yun-quan. Preparation of supported Pt/CeO2-Al2O3 catalyst and its performance in the dehydrogenation of methylcyclohexane[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 718-725.
Citation: ZHAO Xin, HE Feng, XIONG Guo, LI Gong-hua, WANG Wei-yan, LI Wen-song, YANG Yun-quan. Preparation of supported Pt/CeO2-Al2O3 catalyst and its performance in the dehydrogenation of methylcyclohexane[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 718-725.

负载型Pt/CeO2-Al2O3催化剂的制备及其脱氢性能

基金项目: 

湖南省研究生科研创新 CX2010B258

详细信息
  • 中图分类号: TQ031.4;TQ032.41

Preparation of supported Pt/CeO2-Al2O3 catalyst and its performance in the dehydrogenation of methylcyclohexane

More Information
  • 摘要: 通过超声辅助共沉淀法制备了具有高比表面积、大孔容和大孔径的CeO2-Al2O3复合载体, 并以此制备了一系列负载型Pt/CeO2-Al2O3催化剂, 采用XRD、氮吸附、NH3-TPD、SEM和TEM等方法对复合载体和催化剂进行了表征; 以甲基环己烷为模型化合物, 考察了Pt/CeO2-Al2O3催化剂的脱氢性能, 研究了载体中Ce/Al物质的量比及反应温度对其催化脱氢性能的影响。结果表明, 当Ce/Al物质的量比为0.5时, Pt/CeO2-Al2O3催化剂在450℃下具有较高的脱氢性能; 甲基环己烷转化率达到88.53%, 甲苯的选择性达94.63%。
  • 图  1  复合载体X-CeO2-Al2O3的XRD谱图

    Figure  1  XRD patterns of various X-CeO2-Al2O3 supports with different Ce/Al mol ratios

    a: 1.0; b: 0.5; c: 2.0

    图  2  负载Pt后X-CeO2-Al2O3催化剂的XRD谱图

    Figure  2  XRD patterns of X-CeO2-Al2O3 catalysts with different Ce/Al mol ratios

    a: 1.0; b: 0.5; c: 2.0

    图  3  样品的N2物理吸附-脱附曲线

    Figure  3  Nitrogen adsorption-desorption isotherms of various CeO2-Al2O3 supports with different Ce/Al mol ratios

    a: 1.0; b: 0.5; c: 2.0

    图  4  样品的孔径分布

    Figure  4  Pore diameter size distribution of various CeO2-Al2O3 supports with different Ce/Al mol ratios

    a: 1.0; b: 0.5; c: 2.0

    图  5  负载1%贵金属Pt后催化剂的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of the 1%Pt/CeO2-Al2O3 catalysts with different Ce/Al mol ratios

    a: 1.0; b: 0.5; c: 2.0

    图  6  负载1%贵金属Pt的催化剂SEM照片

    Figure  6  SEM images of 1%Pt/CeO2-Al2O3 catalysts with different Ce/Al mol ratios

    (a): 1.0; (b): 0.5; (c): 2.0

    图  7  负载1%贵金属Pt的催化剂TEM照片

    Figure  7  TEM images of 1%Pt/CeO2-Al2O3 catalysts with different Ce/Al mol ratios

    (a): 1.0; (b): 0.5; (c): 2.0

    图  8  负载1%贵金属Pt后的催化剂H2-TPR谱图

    Figure  8  H2-TPR profiles of 1%Pt/CeO2-Al2O3 catalysts with different Ce/Al mol ratios

    a: 1.0; b: 0.5; c: 2.0

    图  9  进料速率对MCH转化率的影响

    Figure  9  Effect of feed rate on the conversion of methylcyclohexane for the dehydrogenation of methylcyclohexane over the 1%Pt/CeO2-Al2O3 catalyst (1.0g, Ce/Al mol ratio=0.5) at atmospheric pressure and 450℃

    图  10  反应温度对MCH转化率和产物选择性的影响

    Figure  10  Effect of reaction temperature on the methylcyclohexane conversion and selectivity to toluene over the 1%Pt/CeO2-Al2O3 catalysts with different Ce/Al mol ratios

    (a): 1.0; (b): 0.5; (c): 2.0 (1-conversion of MCH; 2-selectivity to toluene; 3-selectivity to methylcyclohexene)

    图  11  催化剂的脱氢效率评价

    Figure  11  Dehydrogenation efficiency of the 1%Pt/CeO2-Al2O3 catalysts with different Ce/Al mol ratios

    a: 1.0; b: 0.5; c: 2.0

    表  1  不同Ce/Al物质的量比复合载体CeO2-Al2O3的孔结构性质

    Table  1  Textural properties of CeO2-Al2O3 composite supports with different Ce/Al mol ratios

    Ce/Al
    (mol ratio)
    Specific area
    A/(m2·g-1)
    Pore volume
    v/(mL·g-1)
    Pore diameter
    d/nm
    1.0100.00.4112.12
    0.5102.00.469.60
    2.047.00.199.59
    下载: 导出CSV
  • [1] TAUBE M, RIPPIN D W T, CRESSWELL D L, KNECHT W. A system of hydrogen-powered vehicles with liquid organic hydrides[J]. Int J Hydrogen Energy, 1983, 8(3):213-225. doi: 10.1016/0360-3199(83)90067-8
    [2] TAUBE M, RIPPIN D, KNECHT W, HAKIMIFARD D, MILISAVLJEVIC B, GRUENENFELDER N. A prototype truck powered by hydrogen from organic liquid hydrides[J]. Int J Hydrogen Energy, 1985, 10(9):595-599. doi: 10.1016/0360-3199(85)90035-7
    [3] SATYAPAL S, PETROVIC J, READ C, THOMAS G, ORDAZ G. The US Department of Energy's National Hydrogen Storage Project:Progress towards meeting hydrogen-powered vehicle requirements[J]. Catal Today, 2007, 120(3):246-256.
    [4] MOORE K L, REEVES K S. DOE hydrogen program annual merit review proceedings[J]. Arlington, VA, USA, 2005. http://www.nrel.gov/docs/fy05osti/38616.pdf
    [5] 王锋, 杨运泉, 王威燕, 陈卓.芳烃储氢技术研究进展[J].化工进展, 2010, 29(10):1877-1884. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201010015.htm

    WANG Feng, YANG Yun-quan, WANG Wei-yan, CHEN-Zhuo. Progress in hydrogen chemical storage technologies with aromatics[J]. Prog Chem, 2010, 29(10):1877-1884. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201010015.htm
    [6] 蔡卫权, 张光旭, 陈进富, 夏涛.有机氢载体低温高效脱氢催化剂的研究进展[J].石油化工, 2007, 36(7):744-749. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG200707021.htm

    CAI Wei-quan, ZHANG Guang-xu, CHEN Jin-fu, XIA-Tao. Development of dehydrogenation catalyst for reversible hydrogen storage based on organic hydrides[J]. Petrochem Technol, 2007, 36(7):744-749. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG200707021.htm
    [7] 葛晖, 李学宽, 秦张峰, 王建国.油品深度加氢脱硫催化研究进展[J].化工进展, 2008, 27(10):1490-1493. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200810004.htm

    GE Hui, LI Xue-kuan, QIN Zhang-feng, WANG Jian-guo. Recent progress of catalyst development for deep-hydrodesulfurization of oil products[J]. Prog Chem, 2008, 27(10):1490-1493. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200810004.htm
    [8] ANANTHACHAR V, DUFFY J J. Efficiencies of hydrogen storage systems on board fuel cell vehicles[J]. Sol Energy, 2005, 78(5):687-694. doi: 10.1016/j.solener.2004.02.008
    [9] QI S, LI Y, YUE J, CHEN H, YI C, YANG B. Hydrogen production from decalin dehydrogenation over Pt-Ni/C bimetallic catalysts[J]. Chin J Catal, 2014, 35(11):1833-1839. doi: 10.1016/S1872-2067(14)60178-9
    [10] HODOSHIMA S, ARAI H, SAITO Y. Liquid-film-type catalytic decalin dehydrogeno-aromatization for long-term storage and long-distance transportation of hydrogen[J]. Int J Hydrogen Energy, 2003, 28(2):197-204. doi: 10.1016/S0360-3199(02)00032-0
    [11] HODOSHIMA S, ARAI H, TAKAIWA S, SAITO Y. Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle[J]. Int J Hydrogen Energy, 2003, 28(11):1255-1262. doi: 10.1016/S0360-3199(02)00250-1
    [12] 陈墨雨. Pt/C催化剂的制备和对氯苯胺的合成.南京:南京工业大学, 2006.

    CHEN Mo-yu. Preparation of platinum supported on activate carbon and synthesis of P-chloroaniline. Nanjing:Nanjing Tech University, 2006.
    [13] 刘欢. Pt/CeO2-Al2O3催化剂的制备及其加氢脱氧性能的研究.湘潭:湘潭大学, 2014.

    LIU Huan. Supported noble metal catalyst prepared by hydrothermal synthesis for the hydrodeoxygenation. Xiangtan:Xiangtan University, 2014.
    [14] MAO J D, SCHIMMELMANN A, MASTALERZ M, HATCHER P G, LI Y. Struc-tural features of a bituminous coal and their changes during low-temperature oxidation and loss of volatiles inves-tigated by advanced solid-state NMR spectroscopy[J]. Energy Fuels, 2010, 24(4):2536-2544. doi: 10.1021/ef9015069
    [15] OKADA Y, SASAKI E, WATANABE E, HYODO S, NISHIJIMA H. Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method[J]. Int J Hydrogen Energy, 2006, 31(10):1348-1356. doi: 10.1016/j.ijhydene.2005.11.014
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  10
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-15
  • 修回日期:  2016-03-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-06-10

目录

    /

    返回文章
    返回