留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LiMn2O4/TiO2催化剂上甲烷氧化偶联反应性能的研究

刘玉兰 张泽凯 倪光 刘华彦 陈银飞

刘玉兰, 张泽凯, 倪光, 刘华彦, 陈银飞. LiMn2O4/TiO2催化剂上甲烷氧化偶联反应性能的研究[J]. 燃料化学学报(中英文), 2016, 44(6): 703-709.
引用本文: 刘玉兰, 张泽凯, 倪光, 刘华彦, 陈银飞. LiMn2O4/TiO2催化剂上甲烷氧化偶联反应性能的研究[J]. 燃料化学学报(中英文), 2016, 44(6): 703-709.
LIU Yu-lan, ZHANG Ze-kai, NI Guang, LIU Hua-yan, CHEN Yin-fei. Performance of oxidative coupling of methane on LiMn2O4/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 703-709.
Citation: LIU Yu-lan, ZHANG Ze-kai, NI Guang, LIU Hua-yan, CHEN Yin-fei. Performance of oxidative coupling of methane on LiMn2O4/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 703-709.

LiMn2O4/TiO2催化剂上甲烷氧化偶联反应性能的研究

详细信息
    通讯作者:

    E-mail: zzk@zjut.edu.cn

    E-mail: yfchen@zjtu.edu.cn

  • 中图分类号: O643

Performance of oxidative coupling of methane on LiMn2O4/TiO2 catalysts

  • 摘要: 采用固相反应法制备了具有尖晶石结构的LiMn2O4/TiO2系列催化剂, 探讨了TiO2、Li/TiO2、Mn/TiO2、LiMn2O4及LiMn2O4/TiO2等不同组成催化剂的甲烷氧化偶联反应性能, 采用XRD、XPS、CO2-TPD和H2-TPR等表征方法对该系列催化剂进行了分析。结果表明, 具有尖晶石结构的LiMn2O4化合物具有较高的甲烷氧化偶联催化活性, 在775℃、0.1MPa、7200mL/(h·g), CH4:O2(体积比) 为2.5的条件下, 甲烷转化率可达25.8%, C2选择性可达43.2%。TiO2的存在不仅进一步提高了甲烷转化率和C2选择性, 还有效抑制了甲烷完全氧化形成CO2的过程。负载8% LiMn2O4的LiMn2O4/TiO2催化剂性能达到最优, 此时甲烷转化率达到31.6%, C2选择性为52.4%, CO2选择性降低到26.3%。考察了不同焙烧温度对催化剂活性的影响, 850℃为LiMn2O4/TiO2催化剂的最佳焙烧温度。
  • 图  1  不同组成催化剂的XRD谱图

    Figure  1  XRD patterns of catalysts with different composition

    a: TiO2; b: Li/TiO2; c: Mn/TiO2; d: LiMn2O4;e: LiMn2O4/TiO2; f: Li-Mn/TiO2

    图  2  LiMn2O4、LiMn2O4/TiO2与Li-Mn/TiO2催化剂O 1s的XPS谱图

    Figure  2  X-ray photoelectron spectra for O 1s over LiMn2O4, LiMn2O4/TiO2 and Li-Mn/TiO2 catalysts

    a: LiMn2O4; b: LiMn2O4/TiO2; c: Li-Mn/TiO2

    图  3  不同组成催化剂的CO2-TPD谱图

    Figure  3  CO2-TPD profiles of catalysts with different composition

    a: LiMn2O4; b: Li/TiO2; c: Mn/TiO2;d: LiMn2O4/TiO2; e: Li-Mn/TiO2

    图  4  不同组成催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of catalysts with different composition

    a: LiMn2O4; b: Li/TiO2;c: Mn/TiO2; d: LiMn2O4/TiO2;e: Li-Mn/TiO2

    表  1  不同组成催化剂的催化性能

    Table  1  Catalytic performance of different catalysts

    CatalystConversion of CH4 x/%Selectivity s/% Yield w/% C2H4/C2H6
    C2COCO2 C2
    TiO222.31.676.122.30.41.0
    0.3%Li/TiO225.110.981.97.22.70.9
    5%Mn/TiO223.121.120.858.14.91.0
    LiMn2O425.843.28.148.711.11.7
    LiMn2O4/TiO230.549.721.129.215.22.1
    Li-Mn/TiO231.451.519.828.716.22.0
    notes: C2 includes ethylene and ethane; the same content of Li and Mn are included in the LiMn2O4/TiO2 and Li-Mn/TiO2 catalysts, respectively 0.3%, 5%(mass fraction); reaction conditions: t=775℃,CH4:O2 (volume ratio)=2.5,GHSV=7200mL/(h·g)
    下载: 导出CSV

    表  2  不同负载量LiMn2O4/TiO2催化剂的催化性能

    Table  2  Catalytic activity of LiMn2O4/TiO2 catalysts with different loadings

    CatalystConversion of CH4 x/%Selectivity s/% Yield w/% C2H4/C2H6
    C2COCO2 C2
    4%LiMn2O4/TiO228.946.218.735.113.42.1
    6%LiMn2O4/TiO229.747.625.427.014.22.1
    8%LiMn2O4/TiO231.652.421.326.316.62.3
    10%LiMn2O4/TiO230.850.219.929.915.51.9
    12%LiMn2O4/TiO228.147.915.536.613.51.8
    下载: 导出CSV

    表  3  不同焙烧温度对LiMn2O4/TiO2催化剂性能的影响

    Table  3  Influence of calcination temperature on performance of LiMn2O4/TiO2catalysts

    CatalystConversion of CH4 x/%Selectivity s/% Yield w/% C2H4/C2H6
    C2COCO2 C2
    LiMn2O4/TiO2(500℃)29.730.555.414.19.12.1
    LiMn2O4/TiO2(850℃)30.549.721.129.215.22.1
    LiMn2O4/TiO2 (1000℃)27.931.933.035.18.91.8
    下载: 导出CSV

    表  4  通过O 1s谱图得LiMn2O4/TiO2与Li-Mn/TiO2催化剂表面活性氧物种的组成

    Table  4  Surface composition of LiMn2O4/TiO2 and Li-Mn/TiO2 catalysts obtained using O 1s photoelectron spectroscopy

    CatalystO22- O- O2- $\frac{\text{O}_{2}^{2-}+{{\text{O}}^{-}}}{{{\text{O}}^{2-}}}$
    E/eVwatom/% E/eVwatom/% E/eVwatom/%
    LiMn2O4/TiO2530.741.3530.16.1528.952.6 0.90
    Li-Mn/TiO2531.143.0 530.19.9528.947.1 1.12
    LiMn2O4530.632.9532.1(CO32-)8.8528.958.3 0.56
    下载: 导出CSV

    表  5  H2-TPR谱图半定量分析

    Table  5  Semi-quantitative analysis of H2-TPR profiles

    CatalystArea of peaksH2 consumption
    /(mmol·g-1)
    LiMn2O436214.015.80
    Li/TiO2514.480.08
    Mn/TiO21642.040.26
    LiMn2O4/TiO21710.780.27
    Li-Mn/TiO21763.710.28
    下载: 导出CSV
  • [1] KELLER G E, BHASIN M M. Synthesis of ethylene via oxidative coupling of methane:I. Determination of active catalysts[J]. J Catal, 1982, 73(1):9-19. doi: 10.1016/0021-9517(82)90075-6
    [2] 张志翔, 王凤荣, 苑慧敏, 王斯晗, 张宝军, 孟素凤.甲烷氧化偶联反应制乙烯的研究进展[J].现代化工, 2007, 27(3):20-25.

    ZHANG Zhi-xiang, WANG Feng-rong, YUAN Hui-min, WANG Si-han, ZHANG Bao-jun, MENG Su-feng. The research progress of the oxidative coupling of methane to ethylene[J]. Mod Chem Ind, 2007, 27(3):20-25.
    [3] 王凡, 郑丹星.甲烷氧化偶联制烯烃的热力学平衡限度[J].燃料化学学报, 2006, 34(1):71-74. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16951.shtml

    WANG Fan, ZHENG Dan-xing. The thermodynamic equilibrium limit for the oxidative coupling of methane[J]. J Fuel Chem Technol, 2006, 34(1):71-74. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16951.shtml
    [4] KORF S J, ROOS J A, DERKSEN J W H C, VREEMAN J A, VAN OMMEN J G, ROSS J R H. Oxidative coupling of methane over Ba/CaO catalysts:A comparison with Li/MgO[J]. Appl Catal, 1990, 59(1):291-309. doi: 10.1016/S0166-9834(00)82205-8
    [5] JI S F, XIAO T C, LI S B, CHOU L J, ZHANG B, XU C Z, HOU R I, YORK A P E, GREEN M L H. Surface WO4 tetrahedron:The essence of the oxidative coupling of methane over M-W-Mn/SiO2 catalysts[J]. J Catal, 2003, 220(1):47-56. doi: 10.1016/S0021-9517(03)00248-3
    [6] IVANOV D V, ISUPOVA L A, GERASIMOV E Y, DOVLITOVA L S, GLAZNEVA T S, PROSVIRIN I P. Oxidative methane coupling over Mg, Al, Ca, Ba, Pb-promoted SrTiO3 and Sr2TiO4:Influence of surface composition and microstructure[J]. Appl Catal A:Gen, 2014, 485:10-19. doi: 10.1016/j.apcata.2014.07.024
    [7] 陈宏善, 牛建中, 张兵, 李树本. Na-W-Mn/SiO2催化剂中的组分协同效应[J].催化学报, 2000, 21(1):55-58.

    CHEN Hong-shan, NIU Jian-zhong, ZHAGN Bing, LI Shu-ben. The synergistic effect over the components of Na-W-Mn/SiO2 catalyst. Chin J Catal, 2000, 21(1):55-58.
    [8] 宋国华, 缪建文, 范以宁, 周静.低温甲烷氧化偶联纳米SrTi0.975Li0.025O3-δ催化剂的原位ESR和TPSR表征[J].燃料化学学报, 2010, 38(4):490-495. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17613.shtml

    SONG Guo-hua, MIU Jian-wen, FAN Yi-ning, ZHOU Jing. In situ ESR and TPSR measurements of SrTi0.975Li0.025O3-δ nanocatalysts for oxidative coupling of methane at low-temperature[J]. J Fuel Chem Technol, 2010, 38(4):490-495. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17613.shtml
    [9] HARGREAVES J S J, HUTCHINGS G J, JOYNER R W, KIELY C J. Structural aspects of magnesium oxide catalysts for the oxidative coupling of methane[J]. Catal Today, 1991, 10(3):259-266. doi: 10.1016/0920-5861(91)80005-T
    [10] WANG D J, ROSYNEK M P, LUNSFORD J H. The effect of chloride Ions on a Li+-MgO catalyst for the oxidative dehydrogenation of ethane[J]. J Catal, 1995, 151(1):155-167. doi: 10.1006/jcat.1995.1018
    [11] XU M, LUNSFORD J. Effect of temperature on methyl radical generation over Sr/La2O3 catalysts[J]. Catal Lett, 1991, 11(3/6):295-300.
    [12] MAHMOODI S, EHSANI M R, GHOREISHI S M. Effect of promoter in the oxidative coupling of methane over synthesized Mn/SiO2 nanocatalysts via incipient wetness impregnation[J]. J Ind Eng Chem, 2010, 16(6):923-928. doi: 10.1016/j.jiec.2010.09.007
    [13] ARNDT S, OTREMBA T, SIMON U, YILDIZ M, SCHUBERT H, SCHOMÄCKER R. Mn-Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known?[J]. Appl Catal A:Gen, 2012, 425-426:53-61. doi: 10.1016/j.apcata.2012.02.046
    [14] TIEMERSMA T P, TUINIER M J, GALLUCCI F, KUIPERS J A M, ANNALAND M V S. A kinetics study for the oxidative coupling of methane on a Mn/Na2WO4/SiO2 catalyst[J]. Appl Catal A:Gen, 2012, 433-434:96-108. doi: 10.1016/j.apcata.2012.05.002
    [15] BECK B, FLEISCHER V, ARNDT S, HEVIA M G, URAKAWA A, HUGO P, SCHOMÄCKER R. Oxidative coupling of methane-A complex surface/gas phase mechanism with strong impact on the reaction engineering[J]. Catal Today, 2014, 228:212-218. doi: 10.1016/j.cattod.2013.11.059
    [16] KOIRALA R, BVCHEL R, PRATSINIS S E, BAIKER A. Oxidative coupling of methane on flame-made Mn-Na2WO4/SiO2:Influence of catalyst composition and reaction conditions[J]. Appl Catal A:Gen, 2014, 484:97-107. doi: 10.1016/j.apcata.2014.07.013
    [17] KOU Y, WANG H, ZHANG H, YANG X. Amorphous features of working catalysts[J]. Catal Today, 1999, 51(1):47-57. doi: 10.1016/S0920-5861(99)00007-3
    [18] MALEKZADEH A, KHODADADI A, ABEDINI M, AMINI M, BAHRAMIAN A, DALAI A K. Correlation of electrical properties and performance of OCM MOx/Na2WO4/SiO2 catalysts[J]. Catal Commun, 2001, 2(8):241-247. doi: 10.1016/S1566-7367(01)00034-6
    [19] WANG D J, ROSYNEK M P, LUNSFORD J H. Oxidative coupling of methane over oxide-supported sodium-manganese catalysts[J]. J Catal, 1995, 155(2):390-402. doi: 10.1006/jcat.1995.1221
    [20] MALEKZADEH A, KHODADADI A, DALAI A K, ABEDINI M. Oxidative coupling of methane over lithium doped (Mn+W)/SiO2 catalysts[J]. J Nat Gas Chem, 2007, 16(2):121-129. doi: 10.1016/S1003-9953(07)60037-1
    [21] ZHONG W, DAI H X, NG C F, AU C T. A comparison of nanoscale and large-size BaCl2-modified Er2O3 catalysts for the selective oxidation of ethane to ethylene[J]. Appl Catal A:Gen, 2000, 203(2):239-250. doi: 10.1016/S0926-860X(00)00486-5
    [22] ZHAO Q, BAO X H, WANG Y, LIN L W, LI G, GUO X W, WANG X S. Studies on superoxide O2- species on the interaction of TS-1 zeolite with H2O2[J]. J Mol Catal A:Chem, 2000, 157(1/2):265-268.
    [23] WANG Z, ZOU G, LUO X, LIU H, GAO R, CHOU L, WANG X. Oxidative coupling of methane over BaCl2-TiO2-SnO2 catalyst[J]. J Nat Gas Chem, 2012, 21(1):49-55. doi: 10.1016/S1003-9953(11)60332-0
    [24] 沈鸿福, 王新平, 刘勤.甲烷氧化合成乙烯的Li2SO4-MnxOy/TiO2催化剂[J].催化学报, 1990, 11(1):60-65.

    SHEN Hong-fu, WANG Xin-ping, LIU Qin. Li2SO4-MnxOy/TiO2 catalyst for the oxidative coupling of methane[J]. Chin J Catal, 1990, 11(1):60-65.
    [25] KONDRATENKO E V, WOLF D, BAERNS M. Influence of electronic properties of Na2O/CaO catalysts on their catalytic characteristics for the oxidative coupling of methane[J]. Catal Lett, 1999, 58:217-223. doi: 10.1023/A:1019058724099
    [26] MALEKZADEH A, ABEDINI M, KHODADADI A A, AMINI M, MISHRA H K, DALAI A K. Critical influence of Mn on low-temperature catalytic activity of Mn/Na2WO4/SiO2 catalyst for oxidative coupling of methane[J]. Catal Lett, 2002, 84:45-51. doi: 10.1023/A:1021020516674
    [27] YANG T L, FENG L B, SHEN S K. Oxygen species on the surface of La2O3/CaO and its role in the oxidative coupling of methane[J]. J Catal, 1994, 145:384-389. doi: 10.1006/jcat.1994.1048
    [28] GOPINATH C S, HEGDE S G, RAMASWAMY A V, MAHAPATRA S. Photoemission studies of polymorphic CaCO3 materials[J]. Mater Res Bull, 2002, 37(7):1323-1332. doi: 10.1016/S0025-5408(02)00763-8
    [29] FERREIRA V J, TAVARES P, FIGUEIREDO J L, FARIA J L. Ce-doped La2O3 based catalyst for the oxidative coupling of methane[J]. Catal Commun, 2013, 42:50-53. doi: 10.1016/j.catcom.2013.07.035
    [30] JONES C A, LEONARD J J, SOFRANKO J A. The oxidative conversion of methane to higher hydrocarbons over alkali-promoted Mn-SiO2[J]. J Catal, 1987, 103:311-319. doi: 10.1016/0021-9517(87)90123-0
    [31] LI H, VRINAT M, BERHAULT G, LI D, NIE H, AFANASIEV P. Hydrothermal synthesis and acidity characterization of TiO2 polymorphs[J]. Mater Res Bull, 2013, 48(9):3374-3382. doi: 10.1016/j.materresbull.2013.05.017
    [32] KAPTEIJN F, SINGOREDJO L, ANDREINI A, MOULIJN J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B:Environ, 1994, 3(2):173-189. https://www.researchgate.net/publication/222491231_Activity_and_selectivity_of_pure_manganese_oxides_in_the_selective_catalytic_reduction_of_nitric_oxide_with_ammonia
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  34
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-21
  • 修回日期:  2016-03-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-06-10

目录

    /

    返回文章
    返回