Abstract:
The polypropylene hollow fiber membrane was subjected to dopamine oxidation and silanization two-step surface modification treatment, and then the surface molecular molecularly imprinted polymerization was carried out using methacrylic acid as a functional monomer to prepare a hollow fiber membrane supported-dibenzothiophene molecularly imprinted composite membrane (MIP-PP membrane).The morphology of the imprinted composite membrane was characterized by infrared spectroscopy and scanning electron microscopy, and the desulfurization performance of MIP-PP membrane was measured. The results show that at 298 K, the adsorption of DBT by MIP-PP membrane reaches equilibrium at 180 min, and the maximum adsorption capacity is 133.32 mg/g. The adsorption of DBT by MIP-PP membrane conforms to the Lagergren quasi-first-order kinetic model and the Langmuir adsorption isotherm, which is a spontaneous exothermic process.