留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平板式V2O5-MoO3/TiO2型SCR催化剂的中低温脱硝和抗中毒性能研究

蔺卓玮 陆强 唐昊 李慧 董长青 杨勇平

蔺卓玮, 陆强, 唐昊, 李慧, 董长青, 杨勇平. 平板式V2O5-MoO3/TiO2型SCR催化剂的中低温脱硝和抗中毒性能研究[J]. 燃料化学学报, 2017, 45(1): 113-122.
引用本文: 蔺卓玮, 陆强, 唐昊, 李慧, 董长青, 杨勇平. 平板式V2O5-MoO3/TiO2型SCR催化剂的中低温脱硝和抗中毒性能研究[J]. 燃料化学学报, 2017, 45(1): 113-122.
LIN Zhuo-wei, LU Qiang, TANG Hao, LI Hui, DONG Chang-qing, YANG Yong-ping. Research on the middle-low temperature denitration and anti-poisoning properties of plate V2O5-MoO3/TiO2 SCR catalysts[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 113-122.
Citation: LIN Zhuo-wei, LU Qiang, TANG Hao, LI Hui, DONG Chang-qing, YANG Yong-ping. Research on the middle-low temperature denitration and anti-poisoning properties of plate V2O5-MoO3/TiO2 SCR catalysts[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 113-122.

平板式V2O5-MoO3/TiO2型SCR催化剂的中低温脱硝和抗中毒性能研究

基金项目: 

国家重点基础研究发展规划 973 project

国家重点基础研究发展规划 2015CB251501

中央高校基本科研业务费 2016YQ05

中央高校基本科研业务费 2015ZZD02

详细信息
    通讯作者:

    陆强, Tel:010-61772030, E-mail:qianglu@mail.ustc.edu.cn

  • 中图分类号: X51

Research on the middle-low temperature denitration and anti-poisoning properties of plate V2O5-MoO3/TiO2 SCR catalysts

Funds: 

Major State Basic Research Development Program of China 973 project

Major State Basic Research Development Program of China 2015CB251501

Fundamental Research Funds for the Central Universities 2016YQ05

Fundamental Research Funds for the Central Universities 2015ZZD02

  • 摘要: 针对中低温锅炉烟气脱硝技术需求的特点,采用等体积浸渍法,以V2O5为活性组分、MoO3为助剂,制备了高钒高钼含量的V2O5-MoO3/TiO2型粉末和平板式SCR脱硝催化剂,考察了活性组分和助剂含量对催化剂活性以及抗SO2和H2O中毒性能的影响,对反应前后的催化剂进行了微观表征,并针对最优催化剂研究了其在不同烟气工况下催化剂的脱硝性能。结果表明,提升V2O5负载量可以有效提高催化剂的脱硝活性;MoO3助剂的添加也可以提高催化剂的脱硝活性。XPS、XRF、FT-IR等表征结果表明,MoO3的含量会影响催化剂中V4+/V5+的比值,其相对含量的增加有利于催化剂中非化学计量钒物种的形成以及化学吸附氧比例的增加,钼与钒物种间的交互作用是抑制SO2和H2O对催化剂的毒化作用的关键。3V2O5-10MoO3/TiO2平板式催化剂在温度为200℃、空速为3 500 h-1含SO2和H2O烟气条件下,经30 d连续反应,脱硝效率稳定维持在82%左右,该催化剂在中低温下具有优异的抗SO2和H2O中毒性能以及稳定性。
  • 图  1  SCR脱硝实验装置示意图

    Figure  1  Schematic diagram of the SCR experimental setup

    图  2  V2O5和MoO3负载量对催化剂脱硝效率的影响

    Figure  2  Effects of V2O5(a) and MoO3(b) loadings on denitrification efficiency of the catalysts

    图  3  SO2和H2O对F-3V2O5-10MoO3/ TiO2、F-5V2O5-10MoO3/TiO2、F-5V2O5-10WO3/TiO2催化剂的影响

    Figure  3  NOx conversions over F-3V2O5-10MoO3/ TiO2, F-5V2O5-10MoO3/TiO2 and F-5V2O5-10WO3/TiO2 catalysts in the presence of SO2 and H2O (temperature 200 ℃, space velocity 24 000 h-1, NH3/NO (volume ratio)=1.0)

    图  4  SO2和H2O对B-3V2O5-10MoO3/TiO2与B-5V2O5-10MoO3/ TiO2催化剂的影响

    Figure  4  NOx conversions over B-3V2O5-10MoO3/ TiO2 and B-5V2O5-10MoO3/TiO2 catalysts in the presence of SO2 and H2O (temperature 200 ℃, space velocity 3 500 h-1, NH3/NO (volume ratio)=1.0)

    图  5  新鲜催化剂和反应后催化剂的V 2p3/2 XPS谱图

    Figure  5  V 2p3/2 XPS spectra of the fresh catalysts (a) and used catalysts (b)

    图  6  新鲜催化剂和反应后催化剂的Mo 3d XPS谱图

    Figure  6  Mo 3d XPS spectra of the fresh catalysts (a) and used catalysts (b)

    图  7  新鲜催化剂和反应后催化剂的O 1s XPS谱图

    Figure  7  O 1s XPS spectra of the fresh catalysts (a) and used catalysts (b)

    图  8  反应后催化剂的S 2p3/2 XPS谱图

    Figure  8  S 2p 3/2 XPS spectra of the used catalysts

    图  9  新鲜催化剂和反应后催化剂的FT-IR谱图

    Figure  9  FT-IR spectra of the fresh and used catalysts

    图  10  温度、NOx浓度、SO2浓度、空速对B-3V2O5-10MoO3/TiO2催化剂脱硝效率的影响

    Figure  10  Effects of temperature (a), NOx concentration (b), SO2 concentration (c), space velocity (d) on denitrification efficiency over B-3V2O5-10MoO3/TiO2 catalyst

    表  1  催化剂的比表面积和孔结构

    Table  1  Specific surface area and pore structure of the catalysts

    SampleCatalystSpecific surface area
    A/(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Average pore diameter
    d/nm
    1F-3V2O5-10MoO3/TiO2(fresh)71.430.3217.8
    2F-5V2O5-10MoO3/TiO2(fresh)50.640.2519.6
    3B-3V2O5-10MoO3/TiO2(fresh)54.320.2316.7
    4B-5V2O5-10MoO3/TiO2(fresh)49.040.2218.0
    5F-3V2O5-10MoO3/TiO2(after SCR)62.090.2818.0
    6F-5V2O5-10MoO3/TiO2(after SCR)35.780.1719.9
    7B-3V2O5-10MoO3/TiO2(after SCR)*26.640.1624.4
    8B-5V2O5-10MoO3/TiO2(after SCR)38.140.1819.3
    *duration time of the SO2 and H2O deactivation experiment: NO.5 and NO.6 catalysts were 167 h, NO.7 catalyst was 120 d and NO.8 catalyst was 17 d
    下载: 导出CSV

    表  2  催化剂中各组分含量

    Table  2  Each component content of the catalysts

    SampleContent w/%
    V2O5MoO3SiO2Al2O3SO3TiO2
    12.868.66---88.27
    24.988.62---86.22
    32.708.046.595.37-75.82
    44.807.966.385.18-74.39
    52.808.46--1.6486.19
    64.748.25--5.4380.70
    72.517.336.214.498.4769.06
    84.347.546.254.934.5271.45
    *: annotation: duration time of the SO2 and H2O deactivation experiment: NO.5 and NO.6 catalysts were 167 h, NO.7 catalyst was 120 d and NO.8 catalyst was 17 d
    下载: 导出CSV
  • [1] 丁健, 刘清才, 孔明, 林凡, 杨剑, 任山.燃煤烟气中砷对V2O5-WO3/TiO2 SCR脱硝催化剂性能的影响[J].燃料化学学报, 2016, 44(4):495-499. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18819.shtml

    DING Jian, LIU Qing-cai, KONG Ming, LIN Fan, YANG Jian, REN Shan. Influence of arsenic in flue gas on the performance of V2O5-WO3/TiO2 catalyst in selective catalytic reduction of NOx[J]. J Fuel Chem Technol, 2016, 44(4):495-499. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18819.shtml
    [2] 江博琼. Mn/TiO2系列低温SCR脱硝催化剂制备及其反应机理研究[D].杭州:浙江大学, 2008.

    JIANG Bo-qiong. The preparation of Mn/TiO2 series low-temperature SCR de NOx catalysts and its reaction mechanism[D]. Hangzhou:Zhejiang University, 2008.
    [3] 唐志雄, 岑超平, 陈雄波, 陈定盛, 曾文豪.平板玻璃工业窑炉烟气中低温SCR脱硝中试研究[J].环境工程学报, 2015, 9(2):817-822. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201502051.htm

    TANG Zhi-xiong, CEN Chao-ping, CHEN Xiong-bo, CHEN Ding-sheng, ZENG Wen-hao. Pilot-scale study on SCR technology applied in flue gas de NOx of flat glass furnaces at low & middle temperatures[J]. Chin J Environ Eng, 2015, 9(2):817-822. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201502051.htm
    [4] 李哲, 汪莉, 贠丽, 王振南, 李梦霞, 李鑫. Cr-MnOx/TiO2-ZrO2低温选择催化还原NO的活性及抗毒性能[J].工程科学学报, 2015, (8):1049-1056.

    LI Zhe, WANG Li, YUN Li, WANG Zhen-nan, LI Meng-xia, LI Xin. Activity and antitoxic properties of Cr-MnOx/TiO2-ZrO2 for low-temperature selective catalytic reduction of NO[J]. Chin J Eng, 2015, (8):1049-1056.
    [5] GAO X, JIANG Y, LUO Z, FU Y, ZHONG Y, CHEN K. Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3[J]. Catal Commun, 2010, 11(5):465-469. doi: 10.1016/j.catcom.2009.11.024
    [6] XU W, HE H, YU Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. J Phys Chem C, 2009, 113(11):4426-4432. doi: 10.1021/jp8088148
    [7] 彭悦.选择性催化还原氮氧化物铈基催化剂的研究[D].长春:吉林大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10183-1012365434.htm

    PENG Yue. Selective catalytic reduction of NOx on cerium-based catalysts[D]. Changchun:Jilin University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10183-1012365434.htm
    [8] 刘亚明, 束航, 徐齐胜, 张玉华, 杨林军. SCR脱硝过程中SO2催化氧化的原位红外研究[J].燃料化学学报, 2015, 43(8):1018-1024. doi: 10.1016/S1872-5813(15)30030-X

    LIU Ya-ming, SHU Hang, XU Qi-sheng, ZHANG Yu-hua, YANG Lin-jun. FT-IR study of the catalytic oxidation of SO2 during the process of selective catalytic reduction of NO with NH3 over commercial catalysts[J]. J Fuel Chem Technol, 2015, 43(8):1018-1024. doi: 10.1016/S1872-5813(15)30030-X
    [9] KOBAYASHI M, KUMA R, MORITA A. Low temperature selective catalytic reduction of NO by NH3 over V2O5 supported on TiO2-SiO2-MoO3[J]. Catal Lett, 2006, 112(1/2):37-44. http://www.academia.edu/18733938/Selective_catalytic_reduction_of_NO_with_NH3_over_HZSM-5-supported_fe-cu_nanocomposite_catalysts_The_fe-cu_bimetallic_effect
    [10] 朱繁, 何洪, 李坚, 吴林彦, 杨品, 邓志鹏. V2O5-MoO3/TiO2催化剂的NOx选择性催化还原及SO2氧化活性[J].工业催化, 2012, 20(9):71-76. http://d.wanfangdata.com.cn/Periodical/dlgc200702029

    ZHU Fan, HE Hong, LI Jian, WU Lin-yan, YANG Pin, DENG Zhi-peng. Activities of NO selective catalytic reduction and SO2 oxidation over V2O5-MoO3/TiO2 catalysts[J].Ind Catal, 2012, 20(9):71-76. http://d.wanfangdata.com.cn/Periodical/dlgc200702029
    [11] PHIL H H, REDDY M P, KUMAR P A, JU L K, HYO J S. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Appl Catal B:Environ, 2008, 78(3/4):301-308.
    [12] 闫东杰, 玉亚, 黄学敏, 刘树军, 刘颖慧. SO2对Mn-Ce/TiO2低温SCR催化剂的毒化作用研究[J].燃料化学学报, 2016, 44(2):232-238. doi: 10.1016/S1872-5813(16)30011-1

    YAN Dong-jie, YU Ya, HUANG Xue-min, LIU Shu-jun, LIU Ying-hui. Poisoning effect of SO2 on Mn-Ce/TiO2 catalysts for NO reduction by NH3 at low temperature[J]. J Fuel Chem Technol, 2016, 44(2):232-238. doi: 10.1016/S1872-5813(16)30011-1
    [13] SHI Y J, SHU H, ZHANG Y H, FAN F M, ZHANG Y P, YANG L J. Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts[J]. Fuel Process Technol, 2016, 150:141-147. doi: 10.1016/j.fuproc.2016.05.016
    [14] KOBAYASHI M, KUMA R, MASAKI S, SUGISHIMA N. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst:Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2005, 60(s3/4):173-179.
    [15] GAN L, GUO F, YU J, XU G. Improved low-temperature activity of V2O5-WO3/TiO2 for denitration using different vanadium precursors[J]. Catal, 2016, 6(2).
    [16] ARNARSON L, RASMUSSEN S B, FALSIG H, LAURITSEN J V, MOSES P G. Coexistence of square pyramidal structures of oxo Vanadium (+5) and (+4) species over low-coverage VOx/TiO2 (101) and (001) anatase catalysts[J]. J Phys Chem C, 2015, 119(41):23445-23452. doi: 10.1021/acs.jpcc.5b06132
    [17] LÁZARO M J, BOYANO A, HERRERA C, LARRUBIA M A, ALEMANY L J, MOLINER R. Vanadium loaded carbon-based monoliths for the on-board NO reduction:Influence of vanadia and tungsten loadings[J]. Chem Eng J, 2009, 155(1/2):68-75.
    [18] SANG H C, CHO S P, LEE J Y, HONG S H, HONG S C, HONG S I. The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature[J]. J Mol Catal A:Chem, 2009, 304(1):166-173. https://www.researchgate.net/publication/244279029_The_influence_of_non-stoichiometric_species_of_VTiO_2_catalysts_on_selective_catalytic_reduction_at_low_temperature
    [19] YAN W, SHEN Y, ZHU S, JIN Q, LIU Y, LI X. Promotional effect of Molybdenum additives on catalytic performance of CeO2/Al2O3, for selective catalytic reduction of NOx[J]. Catal Lett, 2016, 146(7):1221-1230. doi: 10.1007/s10562-016-1739-0
    [20] KORNELAK P, SU D S, THOMAS C, CAMRA J, WESELUCHA-BIRCZYNSKAET A, TOBA M. Surface species structure and activity in NO decomposition of an anatase-supported V-O-Mo catalyst[J]. Catal Today, 2008, 137(2/4):273-277. https://www.researchgate.net/publication/244322741_Surface_species_structure_and_activity_in_NO_decomposition_of_an_anatase-supported_VOMo_catalyst
    [21] AL-KANDARI H, AL-KHARAFI F, AL-AWADI N, EI-DUSOUQUI O M, ALI S A, KATRIB A. The catalytic active sites in partially reduced MoO3 for the hydroisomerization of 1-pentene and n-pentane[J]. Appl Catal A:Gen, 2005, 295(1):1-10. doi: 10.1016/j.apcata.2005.07.023
    [22] LIU J, LI X, ZHAO Q, KE J, XIAO H, LV X. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide:In situ, FTIR analysis for structure-activity correlation[J]. Appl Catal B:Environ, 2016, 200:297-308. https://www.researchgate.net/publication/305396631_Mechanistic_investigation_of_the_enhanced_NH3-SCR_on_cobalt-decorated_Ce-Ti_mixed_oxide_in_situ_FTIR_analysis_for_structure-activity_correlation
    [23] FANG J, BI X, SI D, JIANG Z, HUANG W. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides[J]. Appl Surf Sci, 2007, 253(22):8952-8961. doi: 10.1016/j.apsusc.2007.05.013
    [24] GU T, LIU Y, WENG X, WANG H, WU Z. The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3[J]. Catal Commun, 2010, 12(4):310-313. doi: 10.1016/j.catcom.2010.10.003
    [25] KWON D W, PARK K H, HONG S C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum[J]. Chem Eng J, 2016, 284:315-324. doi: 10.1016/j.cej.2015.08.152
    [26] AUDI A A, SHERWOOD P M A. X-ray photoelectron spectroscopic studies of sulfates and bisulfates interpreted by Xα and band structure calculations[J]. Surf Interface Anal, 2000, 29(4):265-275. doi: 10.1002/(ISSN)1096-9918
    [27] 曹政, 黄妍, 彭莉莉, 李建光. V2O5-Sb2O3-TiO2催化剂低温NH3还原NO及其抗H2O和SO2毒化性能[J].燃料化学学报, 2012, 40(4):456-462. http://rlhxxb.sxicc.ac.cn/CN/article/showSupportInfo.do?id=17927

    CAO Zheng, HUANG Yan, PENG Li-li, LI Jian-guang. Selective catalytic reduction of NO with ammonia over V2O5-Sb2O3-TiO2 at low temperature and resistance to H2O and SO2 poisoning[J]. J Fuel Chem Technol, 2012, 40(4):456-462. http://rlhxxb.sxicc.ac.cn/CN/article/showSupportInfo.do?id=17927
    [28] 束航, 张玉华, 范红梅, 张亚平, 杨林军. SCR脱硝中催化剂表面NH4HSO4生成及分解的原位红外研究[J].化工学报, 2015, 66(11):4460-4468. http://www.hgxb.com.cn/CN/abstract/abstract17531.shtml

    SHU Hang, ZHANG Yu-hua, FAN Hong-mei, ZHANG Ya-ping, YANG Lin-jun. FT-IR study of the formation and decomposition of ammonium bisulfates on the surface of SCR catalyst for nitrogen removal[J]. J Chem Ind Eng, 2015, 66(11):4460-4468. http://www.hgxb.com.cn/CN/abstract/abstract17531.shtml
    [29] 黄继辉, 童华, 童志权, 张俊丰, 黄妍. H2O和SO2对Mn-Fe/MPS催化剂用于NH3低温还原NO的影响[J].过程工程学报, 2008, 8(3):517-522. http://www.cqvip.com/Main/Detail.aspx?id=27465987

    HUANG Ji-hui, TONG Hua, TONG Zhi-quan, ZHANG Jun-feng, HUANG Yan. Effects of H2O and SO2 on Mn-Fe/MPS catalyst for NO reduction by NH3 at lower temperatures[J]. Chin J Process Eng, 2008, 8(3):517-522. http://www.cqvip.com/Main/Detail.aspx?id=27465987
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  43
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-29
  • 修回日期:  2016-11-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-01-10

目录

    /

    返回文章
    返回