留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成气催化转化直接制备低碳烯烃研究进展

于飞 李正甲 安芸蕾 高鹏 钟良枢 孙予罕

于飞, 李正甲, 安芸蕾, 高鹏, 钟良枢, 孙予罕. 合成气催化转化直接制备低碳烯烃研究进展[J]. 燃料化学学报(中英文), 2016, 44(7): 801-814.
引用本文: 于飞, 李正甲, 安芸蕾, 高鹏, 钟良枢, 孙予罕. 合成气催化转化直接制备低碳烯烃研究进展[J]. 燃料化学学报(中英文), 2016, 44(7): 801-814.
YU Fei, LI Zheng-jia, AN Yun-lei, GAO Peng, ZHONG Liang-shu, SUN Yu-han. Research progress in the direct conversion of syngas to lower olefins[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 801-814.
Citation: YU Fei, LI Zheng-jia, AN Yun-lei, GAO Peng, ZHONG Liang-shu, SUN Yu-han. Research progress in the direct conversion of syngas to lower olefins[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 801-814.

合成气催化转化直接制备低碳烯烃研究进展

基金项目: 

国家自然科学基金 21403278

国家自然科学基金 21573271

国家自然科学基金 91545112

上海市科委项目 15DZ1170500

详细信息
    通讯作者:

    钟良枢, Tel: +86-021-20608002; Fax: +86-021-20325034; E-mail: zhongls@sari.ac.cn

    孙予罕, Tel: +86-021-20325009; Fax: +86-021-20325039; E-mail: sunyh@sari.ac.cn

  • 中图分类号: Q643;TQ519

Research progress in the direct conversion of syngas to lower olefins

Funds: 

The project was supported by the National Natural Science Foundation of China 21403278

The project was supported by the National Natural Science Foundation of China 21573271

The project was supported by the National Natural Science Foundation of China 91545112

Shanghai Municipal Science and Technology Commission, China 15DZ1170500

More Information
    Corresponding author: ZHONG Liang-shu, Tel: +86-021-20608002; Fax: +86-021-20325034; E-mail: zhongls@sari.ac.cnSUN Yu-han, Tel: +86-021-20325009; Fax: +86-021-20325039; E-mail: sunyh@sari.ac.cn
  • 摘要: 合成气直接催化转化制备低碳烯烃是C1化学与化工领域中一个极具挑战性的研究课题, 具有流程短、能耗低等优势, 已成为非石油路径生产烯烃的新途径。直接转化方式主要包括经由OX-ZEO双功能催化剂直接制低碳烯烃的双功能催化路线以及经由费托反应直接制备低碳烯烃的FTO路线。综述简述了近年来在合成气直接制备低碳烯烃方面的研究进展, 重点讨论了低碳烯烃的形成机理、新型催化剂的研发及助剂对其催化性能的影响, 并对合成气直接制烯烃的未来进行了展望。
  • 图  1  合成气转化制备低碳烯烃路径示意图

    Figure  1  Various routes for the production of lower olefins via syngas

    图  2  Zr-Zn氧化物与SAPO-34分子筛不同结合方式对反应性的影响[14]

    Figure  2  Effect of integration manner on the catalytic behaviors of the composite catalysts containing Zr-Zn (Zr/Zn=2:1) oxide and SAPO-34

    (a): dual-bed configuration; (b): stacking of granules with sizes of 250-600 mm; (c): simple mixing of the two components in an agate mortar; (d): ball-milling of two components together for 24 h the o/p ratio denotes the ratio of C2-4 olefin/paraffin[14]

    图  3  OX-ZEO双功能催化剂的催化性能[5]

    Figure  3  Performance of the bifunctional OX-ZEO catalyst in the conversion of syngas to olefins[5] (a) CO conversion and product distribution at different H2/CO volume ratios over ZnCrOx/MSAPO; (b) hydrocarbon distribution over OX-ZEO in comparison with that reported for FTTO and that in FTS predicted by the ASF model at a chain growth probability of 0.46; (c) stability test of the ZnCrOx/MSAPO catalyst[5] FTTO or FTO, Fischer-Tropsch to olefin

    图  4  OX-ZEO双功能催化剂的反应过程示意图[15]

    Figure  4  Reaction scheme for the syngas to olefins over the bifunctional OX-ZEO catalyst[15]

    图  5  ASF模型预测得到费托合成产物分布曲线

    Figure  5  Product distribution predicted on the basis of Anderson-Schulz-Flory (ASF) model

    图  6  碳化物机理[22]

    Figure  6  Carbide mechanism for FT synthesis[22]

    图  7  Fe基催化剂积炭测试[59]

    Figure  7  Carbon lay-down measurements for the iron-based catalysts[59]

    the Fischer-Tropsch reaction was carried out at 350 ℃, 2.0×106 Pa, H2/CO (volume ratio)=1, and GHSV=180 000 h-1

    图  8  (a) Mn/Fe3O4结构模型;(b) Fe3O4微球的扫描电镜照片;(c) 还原后Mn/Fe3O4催化剂的TEM照片;(d) Mn/Fe3O4催化剂的STEM照片;(e) 相应的STEM-EDX元素分析[79]

    Figure  8  (a) Structural model for the Mn/Fe3O4 catalyst; (b) SEM images of the Fe3O4 microspheres; (c) TEM images of theMn/Fe3O4 catalyst after reduction; (d) original STEM image of Mn/Fe3O4 catalyst as prepared; (e) corresponding STEM-EDX elemental mapping of Fe, O and Mn on the catalyst[79]

    图  9  高比表面积载体可提高Fe基纳米颗粒的稳定性[2]

    Figure  9  Stabilization of iron-based nanoparticles by using catalyst support with high specific surface area[2]

    图  10  负载量为10%的Fe/NCNTs (a,b)、Fe/t-CNTs (c)、Fe/u-CNTs (d) 的TEM以及HRTEM照片,内嵌图为粒径分布柱状图[96]

    Figure  10  TEM and HRTEM images of activated catalysts with an Fe loading of 10%[96]

    (a, b) Fe/NCNTs; (c) Fe/t-CNTs; (d) Fe/u-CNTs the insets in (a) and (c) are the corresponding particle size distributions

    表  1  S和Na对负载铁催化剂性能的影响[59]

    Table  1  Effect of S and Na promoters on the catalytic performance of supported iorn catalysts in FT synthesis[59]

    Catalyst Fischer-Tropsch yield/(10-5 molCO·gFe-1·s-1) Product selectivity s/%
    CH4 C2-4 olefins C2-4 paraffins C5+
    Fe/Al2O3 0.14 54 42 3 2
    Fe/Al2O3 + 0.2% Na 0.08 50 43 5 3
    Fe/Al2O3 + 0.03% S 1.70 33 58 3 5
    Fe/Al2O3 + 0.2% Na + 0.03% S 0.57 15 64 2 19
    Fe/Al2O3 + 0.4% Na + 0.03% S 0.16 23 51 3 22
    Fe 0.02 78 13 2 7
    Fe + 0.4% Na + 0.4% S 0.30 21 60 3 16
    下载: 导出CSV
  • [1] CORMA A, MELO F V, SAUVANAUD L, ORTEGA F. Light cracked naphtha processing: Controlling chemistry for maximum propylene production[J]. Catal Today, 2005, 107-108: 699-706. doi: 10.1016/j.cattod.2005.07.109
    [2] TORRES GALÜIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catal, 2013, 3(9): 2130-2149. doi: 10.1021/cs4003436
    [3] TIAN P, WEI Y X, YE M, LIU Z M. Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catal, 2015, 5(3): 1922-1938. doi: 10.1021/acscatal.5b00007
    [4] TORRES GALÜIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838. doi: 10.1126/science.1215614
    [5] JIAO F, LI J J, PAN X L, XIAO J P, LI H B, MA H, WEI M M, PAN Y, ZHOU Z Y, LI M R, MIAO S, LI J, ZHU Y F, XIAO D, HE T, YANG J H, QI F, FU Q, BAO X H. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. doi: 10.1126/science.aaf1835
    [6] 陈腊山. MTO/MTP技术的研发现状及应用前景[J].化肥设计, 2008, 46(1): 3-6. http://www.cqvip.com/QK/94720A/200801/26477231.html

    CHEN La-shan. Present situation of MTO/MTP technology development and its application perspective[J]. Chem Fert Des, 2008, 46(1): 3-6. http://www.cqvip.com/QK/94720A/200801/26477231.html
    [7] 何长青, 刘中民, 蔡光宇, 杨立新, 常颜君, 王作周, 姜增全, 石仁敏, 易林林, 孙承林.以双模板剂合成磷酸硅铝分子筛的方法:CN, 1106715[P].1995-08-16.

    HE Chang-qing, LIU Zhong-min, CAI Guang-yu, YANG Li-xin, CHANG Yan-jun, WANG Zuo-zhou, JIANG Zeng-quan, SHI Ren-min, YI Lin-lin, SUN Cheng-lin.A method to synthesize silicoaluminophosphatezeolite via dual-template: CN, 1106715[P]. 1995-08-16.
    [8] 刘中民, 蔡光宇, 何长青, 杨立新, 王作周, 罗静慎, 常彦君, 石仁敏, 姜增全, 孙承林.一种以三乙胺为模板剂的合成硅磷铝分子筛及其制备:CN, 1088483[P].1994-06-29.

    LIU Zhong-min, CAI Guang-yu, HE Chang-qing, YANG Li-xin, WANG Zuo-zhou, LUO Jing-shen, CHANG Yan-jun, SHI Ren-min, JIANG Zeng-quan, SUN Cheng-lin. A method to synthesize silicoaluminophosphate zeolite with triethylaminetemplate: CN, 1088483[P]. 1994-06-29.
    [9] 蔡光宇, 刘中民, 何长青, 孙承林, 扬立新, 常彦君, 石仁敏, 姜增全, 易林林, 王作周.金属改性小孔磷硅铝型分子筛催化剂及其制备方法和应用:CN, 1167654[P].1997-12-17.

    CAI Guang-yu, LIU Zhong-min, HE Chang-qing, SUN Cheng-lin, YANG Li-xin, CHANG Yan-jun, SHI Ren-min, JIANG Zeng-quan, YI Lin-lin, WANG Zuo-zhou. Preparationand application of metal-modified silicoaluminophosphate zeolite catalyst: CN, 1167654[P]. 1997-12-17.
    [10] 李宏愿, 许磊, 刘中民, 孙承林, 杨立新.一种制备SAPO-17和SAPO-44分子筛的方法:CN, 1299775[P].2001-06-20.

    LI Hong-yuan, XU Lei, LIU Zhong-min, SUN Cheng-lin, YANG Li-xin. A method to synthesize SAPO-17 and SAPO-44zeolite: CN, 1299775[P]. 2001-06-20.
    [11] ČEJKA J, CORMA A, ZONES S. Zeolites and Catalysis: Synthesis, Reactions and Applications[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010: 1056.
    [12] CHEN Y P, XU Y M, CHENG D G, CHEN Y C, CHEN F Q, LU X Y, HUANG Y P, NI S B. C2-C4 hydrocarbons synthesis from syngas over CuO-ZnO-Al2O3/SAPO-34 bifunctional catalyst[J]. J Chem Technol Biotechnol, 2015, 90(3): 415-422. doi: 10.1002/jctb.2015.90.issue-3
    [13] 李津京, 潘秀莲, 包信和.核壳结构催化剂Cr-Zn@SiO2@SAPO-34催化合成气直接转化制低碳烃的性能[J].催化学报, 2015, 36(7) : 1131-1135. doi: 10.1016/S1872-2067(14)60297-7

    LI Jin-jing, PAN Xiu-lian, BAO Xin-he. Direct conversion of syngas into hydrocarbons over a core-shell Cr-Zn@SiO2@SAPO-34 catalyst[J]. Chin J Catal, 2015, 36(7): 1131-1135. doi: 10.1016/S1872-2067(14)60297-7
    [14] CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas to lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016, 55(15): 4725-4728. doi: 10.1002/anie.201601208
    [15] DE JONG K P. Surprised by selectivity[J]. Science, 2016, 351(6227): 1030-1031. https://www.researchgate.net/publication/297597897_Surprised_by_selectivity
    [16] SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 1999, 186(1/2): 3-12. http://www.sciencedirect.com/science/article/pii/S0926860X9900160X
    [17] ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. ChemCatChem, 2010, 2(9): 1030-1058. doi: 10.1002/cctc.201000071
    [18] BILOEN P. On the mechanism of the Fischer-Tropsch synthesis[J]. J Roy Neth Chem Soc, 1980, 99(2): 33-38. doi: 10.1002/recl.19800990201/abstract
    [19] BILOEN P, SACHTLER W M H. Mechanism of hydrocarbon synthesis over Fischer-Tropsch catalysts[J]. Adv Catal, 1981, 30: 165-216. http://www.sciencedirect.com/science/article/pii/S0360056408603284
    [20] BRADY Ⅲ R C, PETTIT R. Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction[J]. J Am Chem Soc, 1980, 102(19): 6181-6182. doi: 10.1021/ja00539a053
    [21] BRADY Ⅲ R C, PETTIT R. Mechanism of the Fischer-Tropsch reaction. The chain propagation step[J]. J Am Chem Soc, 1981, 103(5): 1287-1289. doi: 10.1021/ja00395a081
    [22] VAN DER LAAN G P, BEENACKERS A A C M. Kinetics and selectivity of the Fischer-Tropsch synthesis: A literature review[J]. Catal Rev, 1999, 41(3/4): 255-318. http://d.wanfangdata.com.cn/NSTLQK_10.1081-CR-100101170.aspx
    [23] FISCHER F, TROPSCH H. Synthesis of petroleum at atmospheric pressure from gasification products of coal[J]. Brennstoff-Chem, 1926, 7: 97-104.
    [24] FISCHER F, TROPSCH H. Direct synthesis of petroleum hydrocarbons at ordinary pressure. Ⅰ. Ⅱ.[J]. Ber Dtsch Chem Ges, 1926, 59B: 830-831.
    [25] WENTRCEK R, WOOD B J, WISE H. The role of surface carbon in catalytic methanation[J]. J Catal, 1976, 43(1/3): 363-366. http://www.sciencedirect.com/science/article/pii/0021951776903249/part/first-page-pdf
    [26] BILOEN P, HELLE J N, SACHTLER W M H. Incorporation of surface carbon into hydrocarbons during Fischer-Tropsch synthesis: Mechanistic implications[J]. J Catal, 1979, 58(1): 95-107. doi: 10.1016/0021-9517(79)90248-3
    [27] RABO J A, RISCH A P, POUTSMA M L. Reactions of carbon monoxide and hydrogen on Co, Ni, Ru, and Pd metals[J]. J Catal, 1978, 53(3): 295-311. doi: 10.1016/0021-9517(78)90102-1
    [28] KAMINSKY M C, WINOGRAD N, GEOFFROY G L, VANNICE M A. Direct SIMS observation of methylidyne, methylene, and methyl intermediates on a nickel (Ⅲ) methanation catalyst[J]. J Am Chem Soc, 1986, 108(6): 1315-1316. doi: 10.1021/ja00266a042
    [29] ARAKI M, PONEC V. Methanation of carbon monoxide on nickel and nickel-copper alloys[J]. J Catal, 1976, 44(3): 439-448. doi: 10.1016/0021-9517(76)90421-8
    [30] SHRIVER D F, SAILOR M J. Transformations of carbon monoxide and related ligands on metal ensembles[J]. Acc Chem Res, 1988, 21(10): 374-379. doi: 10.1021/ar00154a004
    [31] BRADLEY J S. The chemistry of carbidocarbonyl clusters[J]. Adv Organomet Chem, 1983, 22: 1-58. https://www.researchgate.net/publication/279426557_The_Chemistry_of_Carbidocarbonyl_Clusters
    [32] CHISHOLM M H, HAMMOND C E, JOHNSON V J, STREIB W E, HUFFMAN J C. Metal alkoxides: Models for metal oxides. 17. Reductive cleavage of carbon monoxide to carbide and oxide by ditungsten and tetratungsten alkoxides. Crystal and molecular structures of W4(μ4-C)(OCH2-c-Pen)14, W4(μ4-C)(O)(OCH2-t-Bu)12 and W4(μ4-C)(O)(O-i-Pr)12[J]. J Am Chem Soc, 1992, 114(18): 7056-7065.
    [33] VANNICE M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group Ⅷ metals: Ⅰ. The specific activities and product distributions of supported metals[J]. J Catal, 1975, 37(3): 449-461. doi: 10.1016/0021-9517(75)90181-5
    [34] BHASIN M M, BARTLEY W J, ELLGEN P C, WILSON T P. Synthesis gas conversion over supported rhodium and rhodium-iron catalysts[J]. J Catal, 1978, 54(2): 120-128. doi: 10.1016/0021-9517(78)90035-0
    [35] ICHIKAWA M. Catalysis by supported metal crystallites from carbonyl clusters. II. Catalytic ethanol synthesis from CO and H2 under atmospheric pressure over supported rhodium crystallites prepared from Rh carbonyl clusters deposited on TiO2, ZrO2, and La2O3[J]. Bull Chem Soc Jpn, 1978, 51(8): 2273-2277. doi: 10.1246/bcsj.51.2273
    [36] ICHIKAWA M. Catalysis by supported metal crystallites prepared from metal carbonyl clusters: III. Catalytic vapor-phase hydroformylation of olefins over Rh, bimetallic Rh-Co, and Co crystallites prepared from the carbonyl cluster compounds dispersed on zinc oxide[J]. J Catal, 1979, 56(1): 127-129. doi: 10.1016/0021-9517(79)90096-4
    [37] ICHIKAWA M. Catalytic hydroformylation of olefins over the rhodium, bimetallic Rh-Co, and cobalt carbonyl clusters supported with some metal oxides[J]. J Catal, 1979, 59(1): 67-78. doi: 10.1016/S0021-9517(79)80046-9
    [38] WATSON P R, SOMORJAI G A. The hydrogenation of carbon monoxide over rhodium oxide surfaces[J]. J Catal, 1981, 72(2): 347-363. doi: 10.1016/0021-9517(81)90018-X
    [39] WATSON P R, SOMORJAI G A. The formation of oxygen-containing organic molecules by the hydrogenation of carbon monoxide using a lanthanum rhodate catalyst[J]. J Catal, 1982, 74(2): 282-295. doi: 10.1016/0021-9517(82)90034-3
    [40] KIP B J, HERMANS E G F, VAN WOLPUT J H M C, HERMANS N M A, VAN GRONDELLE J, PRINS R. Hydrogenation of carbon monoxide over rhodium/silica catalysts promoted with molybdenum oxide and thorium oxide[J]. Appl Catal, 1987, 35(1): 109-139. doi: 10.1016/S0166-9834(00)82426-4
    [41] LAVALLEY J C, SAUSSEY J, LAMOTTE J, BREAULT R, HINDERMANN J P, KIENNEMANN A. Infrared study of carbon monoxide hydrogenation over rhodium/ceria and rhodium/silica catalysts[J]. J Phys Chem, 1990, 94(15): 5941-5947. doi: 10.1021/j100378a061
    [42] DRY M E, DE W ERASMUS H B. Update of the sasol synfuels process[J]. Ann Rev Energy, 1987, 12: 1-46. doi: 10.1146/annurev.eg.12.110187.000245
    [43] BUSSEMEIER B, FROHNING C D, CORNILS B. Lower olefins via Fischer-Tropsch[J]. Hgdrocarbon Process, 1975, 55(11): 105-112. https://www.researchgate.net/publication/279652937_Lower_Olefins_via_Fischer-Tropsch
    [44] BUESSEMEIER B, FROHNING C D, HORN G, KLUY W. Process for the production of unsaturated hydro-carbons: US, 4455395[P]. 1984-6-19.
    [45] BUESSEMEIER B, FROHNING C D, HORN G, KLUY W. Process for the manufacture of unsaturated hydrocarbons: US, 4564642[P]. 1986-01-14.
    [46] VENTER J, KAMINSKY M, GEOFFROY G L, VANNICE M A. Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4 olefins from CO and H2: Ⅰ. Chemisorption and catalytic behavior[J]. J Catal, 1987, 103(2): 450-465. doi: 10.1016/0021-9517(87)90136-9
    [47] 沈兴, 王蕾, 张永锋, 李增喜, 张香平, 张锁江.合成气直接制取低碳烯烃的铁基负载型催化剂的制备与性能[J].过程工程学报, 2009, 9(6): 1178-1185. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ200906029.htm

    SHEN Xing, WANG Lei, ZHANG Yong-feng, LI Zeng-xi, ZHANG Xiang-ping, ZHANG Suo-jiang. Preparation and performance of supported iron-based catalysts for conversion of synthesis gas to light olefins[J]. Chin J Process Eng, 2009, 9(6): 1178-1185. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ200906029.htm
    [48] VENTER J, KAMINSKY M, GEOFFROY G L, VANNICE M A. Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4 olefins from CO and H2: Ⅱ. Activity and selectivity maintenance and regenerability[J]. J Catal, 1987, 105(1): 155-162. doi: 10.1016/0021-9517(87)90015-7
    [49] DRY M E, OOSTHUIZEN G J. The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer-Tropsch synthesis[J]. J Catal, 1968, 11(1): 18-24. doi: 10.1016/0021-9517(68)90004-3
    [50] YANG Y, XIANG H W, XU Y Y, BAI L, LI Y W. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2004, 266(2): 181-194. doi: 10.1016/j.apcata.2004.02.018
    [51] LI J B, MA H F, ZHANG H T, SUN Q W, YING W Y, FANG D Y. Sodium promoter on iron-based catalyst for direct catalytic synthesis of light alkenes from syngas[J]. Fuel Process Technol, 2014, 125: 119-124. doi: 10.1016/j.fuproc.2014.03.017
    [52] LI J B, MA H F, ZHANG H T, SUN Q W, YING W Y, FANG D Y. Direct production of light olefins from syngas over potassium modified Fe-Mn catalyst[J]. React Kinet Mech Cat, 2014, 112(2): 409-423. doi: 10.1007/s11144-014-0716-0
    [53] 陈嘉宁, 刘永梅. K、Mn助剂协同效应对Fe基催化剂上CO加氢制低碳烯烃反应性能的影响[J].燃料化学学报, 2013, 41(12): 1488-1494. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18316.shtml

    CHEN Jia-ning, LIU Yong-mei. Effects of Mn-K synergistic action on iron-based catalyst for CO hydrogenation to light olefins[J]. J Fuel Chem Technol, 2013, 41(12): 1488-1494. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18316.shtml
    [54] LOHITHARN N, GOODWIN JR J G. Effect of K promotion of Fe and FeMn Fischer-Tropsch synthesis catalysts: Analysis at the site level using SSITKA[J]. J Catal, 2008, 260(1): 7-16. doi: 10.1016/j.jcat.2008.08.011
    [55] RANKIN J L, BARTHOLOMEW C H. Effects of potassium and calcination pretreatment on the adsorption and chemical/physical properties of Fe/SiO2[J]. J Catal, 1986, 100(2): 533-540. doi: 10.1016/0021-9517(86)90126-0
    [56] TIHAY F, ROGER A C, KIENNEMANN A, POURROY G. Fe-Co based metal/spinel to produce light olefins from syngas[J]. Catal Today, 2000, 58(4): 263-269. doi: 10.1016/S0920-5861(00)00260-1
    [57] TIHAY F, POURROY G, RICHARD-PLOUET M, ROGER A C, KIENNEMANN A. Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials[J]. Appl Catal A: Gen, 2001, 206(1): 29-42. doi: 10.1016/S0926-860X(00)00595-0
    [58] KALAKKAD D S, SHROFF M D, KÖHLER S, JACKSON N, DATYE A K. Attrition of precipitated iron Fischer-Tropsch catalysts[J]. Appl Catal A: Gen, 1995, 133(2): 335-350. doi: 10.1016/0926-860X(95)00200-6
    [59] TORRES GALÜIS H M, KOEKEN A C J, BITTER J H, DAVIDIAN T, RUITENBEEK M, DUGULAN A I, DE JONG K P. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. J Catal, 2013 303: 22-30. doi: 10.1016/j.jcat.2013.03.010
    [60] KANG S H, BAE J W, SAI PRASAD P S, PARK S J, WOO K J, JUN K W. Effect of preparation method of Fe-based Fischer-Tropsch catalyst on their light olefin production[J]. Catal Lett, 2009, 130(3): 630-636. http://d.scholar.cnki.net/detail/SSJD_U/SSJD00003534389
    [61] HOFFER B W, BUNZEL S, NEUMANN D, BAY K, SCHWAB E, GRAESSLE U, STEINER J. Method for producing olefins through reaction of carbon monoxide with hydrogen: WO 2009013174[P]. 2009-01-29.
    [62] WANG D, ZHOU X P, JI J, DUAN X Z, QIAN G, ZHOU X G, CHEN D, YUAN W K. Modified carbon nanotubes by KMnO4 supported iron Fischer-Tropsch catalyst for the direct conversion of syngas to lower olefins[J]. J Mater Chem A, 2015, 3(8): 4560-4567. doi: 10.1039/C4TA05202A
    [63] VAN DIJK W L, NIEMANTSVERDRIET J W, VAN DAR KRAAN A M, VAN DER BAAN H S. Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the Fischer-Tropsch reaction[J]. Appl Catal, 1982, 2(4/5): 273-288. https://www.researchgate.net/publication/256418877_Effect_of_Manganese_Oxide_and_Sulphate_on_Olefin_Selectivity_of_Iron_Supported_Catalysts_in_the_Fischer-Tropsch_Reaction?_sg=IDIzckVX5o9jDJDLNJiyIWXRQ6Fr1AUkAcAIu99zSCcWBlGM55UMqnRs2M520ylO6at5sORMfJV-Lm2oYQ0aeg
    [64] BROMFIELD T C, COVILLE N J. The effect of sulfide ions on a precipitated iron Fischer-Tropsch catalyst[J]. Appl Catal A: Gen, 1999, 186(1/2): 297-307. https://www.researchgate.net/publication/262864547_The_effect_of_sulfide_ions_on_a_precipitated_iron_Fischer-Tropsch_catalyst
    [65] BROMFIELD T C, COVILLE N J. Surface characterization of sulfided precipitated-iron Fischer-Tropsch catalysts by X-ray photoelectron spectroscopy[J]. Appl Surf Sci, 1997, 119(1/2): 19-24. https://www.researchgate.net/publication/248190213_Surface_characterization_of_sulfided_precipitated-iron_Fischer-Tropsch_catalysts_by_X-ray_photoelectron_spectroscopy
    [66] WU B S, BAI L, XIANG H W, LI Y W, ZHANG Z X, ZHONG B. An active iron catalyst containing sulfur for Fischer-Tropsch synthesis[J]. Fuel, 2004, 83(2): 205-212. doi: 10.1016/S0016-2361(03)00253-9
    [67] MCCUE A J, ANDERSON J A. Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis[J]. Catal Sci Technol, 2014, 4(2): 272-294. doi: 10.1039/C3CY00754E
    [68] KRITZINGER J A. The role of sulfur in commercial iron-based Fischer-Tropsch catalysis with focus on C2-product selectivity and yield[J]. Catal Today, 2002, 71(3/4): 307-318. https://www.researchgate.net/publication/239212306_The_role_of_sulfur_in_commercial_iron-based_Fischer-Tropsch_catalysis_with_focus_on_C_2-product_selectivity_and_yield
    [69] PARK J Y, LEE Y J, KHANNA P K, JUN K W, BAE J W, KIM Y H. Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts: Effect of particle size of iron oxide[J]. J Mol Catal A, 2010, 323(1/2): 84-90. https://www.deepdyve.com/lp/elsevier/alumina-supported-iron-oxide-nanoparticles-as-fischer-tropsch-gtks5XXr9K
    [70] ZHOU X P, JI J, WANG D, DUAN X Z, QIAN G, CHEN D, ZHOU X G. Hierarchical structured α-Al2O3 supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins[J]. Chem Commun, 2015, 51(42): 8853-8856. doi: 10.1039/C5CC00786K
    [71] CROUS R, BROMFIELD T C, BOOYENS S. Olefin selective FT catalyst composition and preparation thereof: US, 2012029096[P]. 2012-02-02.
    [72] HADADZADEH H, MIRZAEI A A, MORSHEDI M, RAEISI A, FEYZI M, ROSTAMIZADEH N. The effect of H2S on the selectivity of light alkenes in the Fe-Mn-catalyzed Fischer-Tropsch synthesis[J]. Petrol Chem, 2010, 50(1): 78-86. doi: 10.1134/S0965544110010123
    [73] TORRES GALÜIS H M, BITTER J H, DAVIDIAN T, RUITENBEEK M, DUGULAN A I, DE JONG K P. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Soc Chem, 2012, 134(39): 16207-16215. doi: 10.1021/ja304958u
    [74] 马利海, 张建利, 范素兵, 赵天生.水热法Fe-Mn催化剂制备及其合成气制低碳烯烃催化活性[J].燃料化学学报, 2013, 41(11): 1356-1360. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18297.shtml

    MA Li-hai, ZHANG Jian-li, FAN Su-bing, ZHAO Tian-sheng. Preparation of Fe-Mn catalyst by hydrothermal method and its catalytic activity for the synthesis of light olefins from CO hydrogenation[J]. J Fuel Chem Technol, 2013, 41(11): 1356-1360. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18297.shtml
    [75] 刘意, 刘勇, 陈建峰, 张燚.不同氧化锰载体对费托钴基催化剂合成低碳烯烃的影响[J].化工学报, 2015, 66(9): 3413-3420. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201509020.htm

    LIU Yi, LIU Yong, CHEN Jian-feng, ZHANG Yi. Effects of MnOx supports on light olefin synthesis using cobalt catalyst in Fischer-Tropsch reaction[J]. J Chem Ind Eng, 2015, 66(9): 3413-3420. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201509020.htm
    [76] 戴薇薇, 刘达, 付东龙, 张征湃, 张俊, 徐晶, 韩一帆. MnOx助剂对Fe/SiO2催化剂费-托合成制低碳烯烃动力学的影响[J].化工学报, 2015, 66(9): 3444-3455.

    DAI Wei-wei, LIU Da, FU Dong-long, ZHANG Zheng-pai, ZHANG Jun, XU Jing, HAN Yi-fan. Kinetics study of Fischer-Tropsch reaction to lower olefins over MnOx-promoted Fe/SiO2 catalysts[J]. J Chem Ind Eng, 2015, 66(9): 3444-3455.
    [77] 汪根存, 张侃, 刘平, 惠海涛, 李文怀, 谭猗生.Fe-Mn催化剂浆态床合成低碳烯烃的反应性能[J].石油化工, 2012, 41(11): 1234-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201211004.htm

    WANG Gen-cun, ZHANG Kan, LIU Ping, HUI Hai-tao, LI Wen-huai, TAN Yi-sheng. Performance of Fe-Mn catalyst for preparation of light olefins in slurry bed reactor[J]. Petrochem Technol, 2012, 41(11): 1234-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201211004.htm
    [78] YANG Z Q, PAN X L, WANG J H, BAO X H. FeN particles confined inside CNT for light olefin synthesis from syngas: Effects of Mn and K additives[J]. Catal Today, 2012, 186(1): 121-127. doi: 10.1016/j.cattod.2011.11.034
    [79] LIU Y, CHEN J F, BAO J, ZHANG Y. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catal, 2015, 6(6): 3905-3909.
    [80] HUO C F, LI Y W, WANG J G, JIAO H J. Insight into CH4 formation in iron-catalyzed Fischer-Tropsch synthesis[J]. J Am Soc Chem, 2009, 131(41): 14713-14721. doi: 10.1021/ja9021864
    [81] PERRICHON V, CHARCOSSET H, BARRAULT J, FORQUY C. Influence of a partial dissolution of alumina during the preparation of iron catalysts on their catalytic properties for Fischer-Tropsch synthesis[J]. Appl Catal, 1983, 7(1): 21-29. doi: 10.1016/0166-9834(83)80235-8
    [82] RAO K R P M, HUGGUNS F E, MAHAJAN V, HUFFMAN G P, RAO V U S, BHATT B L, BUKUR D B, DAVIS B H, O'BRIEN R J. MÖssbauer spectroscopy study of iron-based catalysts used in Fischer-Tropsch synthesis[J]. Top Catal, 1995, 2(1): 71-78. https://www.researchgate.net/publication/227195487_Mssbauer_spectroscopy_study_of_iron-based_catalysts_used_in_Fischer-Tropsch_synthesis?_sg=3bJ7pgzpql-05qYnZjojCdKgeA4xG_OlYGvUHMUKE6Adyt73Au561IZ1imAwug1UHsHfwyN7rtTAWDrSyi6l81ctVOYd3sF0EkzES9lVAZ4
    [83] WAN H J, WU B S, TAO Z C, LI T Z, AN X, XIANG H W, LI Y W. Study of an iron-based Fischer-Tropsch synthesis catalyst incorporated with SiO2[J]. J Mol Catal A, 2006, 260(1/2): 255-263. https://www.researchgate.net/publication/244277699_Study_of_an_iron-based_Fischer-Tropsch_synthesis_catalyst_incorporated_with_SiO_2
    [84] SUO H Y, WANG S G, ZHANG C H, XU J, WU B S, YANG Y, XIANG H W, LI Y W. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012, 286: 111-123. doi: 10.1016/j.jcat.2011.10.024
    [85] 位健, 马现刚, 方传艳, 葛庆杰, 徐恒泳. Fe /SiO2纳米复合物上合成气制低碳烯烃催化性能研究[J].燃料化学学报, 2014, 42(7): 827-832. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18451.shtml

    WEI Jian, MA Xian-gang, FANG Chuan-yan, GE Qing-jie, XU Heng-yong. Iron-silica nanocomposites as a catalyst for the selective conversion of syngas to light olefins[J]. J Fuel Chem Technol, 2014, 42(7): 827-832. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18451.shtml
    [86] 李剑锋, 陶跃武, 周晓峰, 陈庆龄, 袁渭康.负载型铁基催化剂上合成气制低碳烯烃[J].化学反应工程与工艺, 2010, 26(6): 486-493. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFY201006001.htm

    LI Jian-feng, TAO Yue-wu, ZHOU Xiao-feng, CHEN Qing-ling, YUAN Wei-kang. Performance of supported Fe based catalyst for synthesis of light alkenes from syngas[J]. Chem React Eng Technol, 2010, 26(6): 486-493. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFY201006001.htm
    [87] BRUCE L, HOPE G, TURNEY T W. Light olefin production from CO/H2 over silica supported Fe/Mn/K catalysts derived from a bimetallic carbonyl anion, [Fe2Mn (CO)12]-[J]. React Kinet Catal Lett, 1982, 20(1): 175-180.
    [88] VAN DILLEN A J, TERÖRDE R J A M, LENSVELD D J, GEUS J W, DE JONG K P. Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes[J]. J Catal, 2003, 216(1/2): 257-264. https://www.researchgate.net/profile/JW_Geus/publication/27697494_Synthesis_of_supported_catalysts_by_impregnation_and_drying_using_aqueous_chelated_metal_complexes/links/00b49524aa6a260748000000.pdf
    [89] SMITH A K, THEOLIER A, BASSET J M, UGO R, COMMEREUC D, CHAUVIN Y. Hydrocarbon formation from metal carbonyl clusters supported on highly divided oxides[J]. J Am Chem Soc, 1978, 100(8): 2590-2591. doi: 10.1021/ja00476a076
    [90] STOOP F, VAN DER WIELE K. Formation of olefins from synthesis gas over silica-supported RuFe bimetallic catalysts[J]. Appl Catal, 1986, 23(1): 35-47. doi: 10.1016/S0166-9834(00)81450-5
    [91] BAKER B G, CLARK N J. Selective Fischer-Tropsch catalysts containing iron and lanthanide oxides[J]. Stud Surf Sci Catal, 1987, 31: 455-465. doi: 10.1016/S0167-2991(08)65428-2
    [92] BAKER B G, PARK T, CLARK N J, MCARTHUR H, SUMMERVILLE E. Catalysts and methods of their manufacture: US, 4610975[P]. 1986-09-09.
    [93] SOMMEN A P B, STOOP F, VAN DER WIELE K. Synthesis gas conversion on carbon supported iron catalysts and the nature of deactivation[J]. Appl Catal, 1985, 14: 277-288. doi: 10.1016/S0166-9834(00)84360-2
    [94] JONES V K, NEUBAUER L R, BARTHOLOMEW C H. Effects of crystallite size and support on the carbon monoxide hydrogenation activity/selectivity properties of iron/carbon[J]. J Phys Chem, 1986, 20(20): 4832-4839. https://www.researchgate.net/publication/231412455_Effects_of_crystallite_size_and_support_on_the_carbon_monoxide_hydrogenation_activityselectivity_properties_of_ironcarbon
    [95] 张敬畅, 卫国宾, 曹维良.合成气制低碳烯烃用Fe/AC催化剂的制备及性能表征[J].催化学报, 2003, 24(4): 259-264. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200304005.htm

    ZHANG Jing-chang, WEI Guo-bin, CAO Wei-liang. Preparation and characterization of Fe/AC catalysts for synthesis of light olefins via carbon monoxide hydrogenation[J]. Chin J Catal, 2003, 24(4): 259-264. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200304005.htm
    [96] LU J Z, YANG L J, XU B L, WU Q, ZHANG D, YUAN S J, ZHAI Y, WANG X Z, FAN Y N, HU Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal, 2014, 4(2): 613-621. doi: 10.1021/cs400931z
    [97] CHEN X Q, DENG D H, PAN X L, HU Y F, BAO X H. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins[J]. Chem Commun, 2014, 51(1): 217-220. http://www.ncbi.nlm.nih.gov/pubmed/25407097
    [98] SCHULTE H J, GRAF B, XIA W, MUHLER M. Nitrogen-and oxygen-functionalized multiwalled carbon nanotubes used as support in iron-catalyzed, high-temperature Fischer-Tropsch synthesis[J]. 2012, 4(3): 350-355.
    [99] CHEN H, ADESINA A A. Improved alkene selectivity in carbon monoxide hydrogenation over silica supported cobalt-molybdenum catalyst[J]. Appl Catal A: Gen, 1994, 112(2): 87-103. doi: 10.1016/0926-860X(94)80211-4
    [100] FRAENKEL D, GATES B C. Shape-selective Fischer-Tropsch synthesis catalyzed by zeolite-entrapped cobalt clusters[J]. J Am Chem Soc, 1980, 102(7): 2478-2480. doi: 10.1021/ja00527a067
    [101] FEYZI M, HASSANKHANI A. TiO2 supported cobalt-manganese nano catalysts for light olefins production from syngas[J]. J Energy Chem, 2013, 22(4): 645-652. doi: 10.1016/S2095-4956(13)60085-6
    [102] ZHOU W G, LIU J Y, WU X, CHEN J F, ZHANG Y.An effective Co/MnOx catalyst for forming light olefins via Fischer-Tropsch synthesis[J]. Catal Commun, 2015, 60: 76-81. doi: 10.1016/j.catcom.2014.10.027
    [103] TANG L P, SONG C L, YANG X L, LI M L, HU B. Promotion of Mn doped Co/CNTs catalysts for CO hydrogenation to light olefins[J]. Chin J Chem, 2013, 31(6): 826-830. doi: 10.1002/cjoc.v31.6
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1155
  • HTML全文浏览量:  599
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-28
  • 修回日期:  2016-04-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-07-10

目录

    /

    返回文章
    返回