Abstract:
Carbon nanofibers (CNFs) were synthesized by ethanol catalytic combustion method and FeCoNiB was loaded on the CNFs by electroless plating (chemical deposition) method. The effect of electroless plating condition on the particle size, dispersion, composition and structure of FeCoNiB was then investigated, to establish the process for the controllable synthesis of carbon nanofibers with plated FeCoNiB (FeCoNiB/CNFs). In addition, the electrocatalytic performance of FeCoNiB/CNFs was evaluated for the hydrogen evolution reaction (HER) in alkaline environment. The results illustrate that the FeCoNiB/CNFs shows a low overpotential of 366 mV at 100 mA/cm
2 and a quite low Tafel slope value of 41 mV/dec, as well as a stable potential without attenuation during the stability test for 10 h, displaying a stable and high catalytic performance that is comparable to that of noble metal catalysts. This study is probably helpful for the development of efficient non-noble metal catalyst for HER as well as the application of large-scale electrolytic water hydrogen production in industry.