甘油缩合制丙酮缩甘油中催化剂及反应机理研究进展

Research progress of catalysts and reaction mechanism in glycerol condensation to acetone glycidol

  • 摘要: 随着生物柴油产业的蓬勃发展,其主要副产物甘油的资源化利用已亟不可待。其中,将甘油与丙酮缩合生成丙酮缩甘油(2, 2-二甲基-1, 3-二氧戊环-4-甲醇,Solketal)是极具前景的研究方向,因为Solketal作为燃料添加剂不仅能显著增强燃油的黏度和低温性能,还能显著地减少一氧化碳、固体小颗粒及其他环境不友好物质的排放。该反应需依赖于催化剂中酸性位点的催化作用,所以酸催化剂的结构形态、酸量及相关理化性质的设计及完善是制约甘油缩酮化反应工业化进程的关键。因此,本研究结合近年来相关文献,系统综述了在该反应中均相、非均相酸催化剂在该领域中的研究进展及相关反应机理讨论。笔者从结构形态角度进行分类,介绍了不同类型酸催化剂的优势及特色,并在其结构性质对催化活性的影响上进行了重点阐述。对该领域中催化剂未来研究方向进行了展望。

     

    Abstract: With the booming of biodiesel industry, it is urgent to high-valued to recycle glycerol as the main by-product. The condensation of glycerol (GLY) with acetone to produce acetone glycidol (2, 2-dimethyl-1, 3-dioxolane-4-methanol, Solketal) is promising direction for GLY utilization, because Solketal can function as fuel additive to modify the fuel viscosity and low-temperature performance of oil significantly, and reduce the emission of carbon monoxide, small solid particles and other environmentally unfriendly substances further. However, the reaction needs to be accelerated by the catalyst with acid nature, thus the design and modification over the structure and acid properties of catalysts are dominating the process of glycerol ketonization reaction. So, this paper systematically reviews the progress of homogeneous and heterogeneous acid catalysts, and the reaction mechanism in recent years. It is classified based on the structural properties, advantages and characteristics of different catalysts, and influences of their structural properties on catalytic activity. Finally, some future directions for this research field are pointed out.

     

/

返回文章
返回