留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Formation of perovskite-type LaNiO3 on La-Ni/Al2O3-ZrO2 catalysts and their performance for CO methanation

WANG Hong-wei WU Jun-xia WANG Xiao-yan WANG Hong LIU Jin-rong

王宏伟, 吴俊霞, 王晓燕, 王红, 刘进荣. La-Ni/Al2O3-ZrO2催化剂中钙钛矿型LaNiO3的形成及其CO甲烷化性能[J]. 燃料化学学报, 2021, 49(2): 186-197. doi: 10.1016/S1872-5813(21)60012-9
引用本文: 王宏伟, 吴俊霞, 王晓燕, 王红, 刘进荣. La-Ni/Al2O3-ZrO2催化剂中钙钛矿型LaNiO3的形成及其CO甲烷化性能[J]. 燃料化学学报, 2021, 49(2): 186-197. doi: 10.1016/S1872-5813(21)60012-9
WANG Hong-wei, WU Jun-xia, WANG Xiao-yan, WANG Hong, LIU Jin-rong. Formation of perovskite-type LaNiO3 on La-Ni/Al2O3-ZrO2 catalysts and their performance for CO methanation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 186-197. doi: 10.1016/S1872-5813(21)60012-9
Citation: WANG Hong-wei, WU Jun-xia, WANG Xiao-yan, WANG Hong, LIU Jin-rong. Formation of perovskite-type LaNiO3 on La-Ni/Al2O3-ZrO2 catalysts and their performance for CO methanation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 186-197. doi: 10.1016/S1872-5813(21)60012-9

La-Ni/Al2O3-ZrO2催化剂中钙钛矿型LaNiO3的形成及其CO甲烷化性能

doi: 10.1016/S1872-5813(21)60012-9
详细信息
  • 中图分类号: O643

Formation of perovskite-type LaNiO3 on La-Ni/Al2O3-ZrO2 catalysts and their performance for CO methanation

Funds: The project was supported by the National Natural Science Foundation of China (21962014) and Natural Science Foundation of Inner Mongolia(2016MS0219)
More Information
    Author Bio:

    王宏伟,男,出生于1990年08月,在读博士,主要从事CO/CO2甲烷化催化剂的相关研究工作

    Corresponding author: hongwang396@imut.edu.cn; Tel: +86 1868601189; Fax: 0471-3949600
  • 摘要: 尽管Ni基催化剂已被工业化应用于CO甲烷化反应,但催化剂的积炭和烧结仍是需要解决的主要问题。本研究采用中和水解+柠檬酸络合法制备了负载型LaNiO3/Al2O3-ZrO2 CO甲烷化催化剂, 研究了La-Ni负载量和载体焙烧温度对催化剂结构和催化活性的影响,用XRD、H2-TPR、BET、XPS、TEM等表征手段研究了催化剂前驱体到还原后的结构演变。结果表明,以均相的Al-Zr固溶体为载体制备的催化剂更易于形成LaNiO3结构的活性组分,LaNiO3还原的Ni0是保持高温活性的主要原因。La-Ni的负载量影响LaNiO3的存在和Ni还原状态。其中30%的La-Ni负载量易于形成LaNiO3,该催化剂还原后产生的Ni0和La2O3高度分散在载体表面,并且Ni0纳米粒子被载体和La2O3锚定,抑制了Ni0粒子在高温条件下的迁移和聚集而表现出高的热稳定性。
  • Figure  1.  XRD patterns of: (a) supports of AZx and (b) catalysts of 20L-N/AZx

    Figure  2.  H2-TPR profiles of catalysts 20L-N/AZx

    Figure  3.  Catalytic performance for CO methanation over L-N/AZx:(a): CO conversion; (b): CH4 selectivity

    reaction conditions: p = 0.1 MPa, GHSV = 15000 mL/(g·h)

    Figure  4.  XRD profiles of the catalysts yL-N/AZ700

    Figure  5.  H2-TPR patterns of the catalysts yL-N/AZ700

    Figure  6.  N2 adsorption-desorption isotherms of catalysts yL-N/AZ700

    Figure  7.  XPS spectra for the reduced catalysts(a): Ni 2p and La 3d; (b): O 1s; (c): Al 2p; (d); Zr 3d

    reduction condition: 600 °C for 2 h

    Figure  8.  H2-TPR patterns of the 30L-N/AZ700 catalyst before and after reduction

    Figure  9.  catalytic performance for CO methanation over yL-N/AZ700

    (a): CO conversion; (b): CH4 selectivity

    Figure  10.  The catalyst stability test results of 20L-N/AZ700 and 30L-N/AZ700 for a continuous 100 h at 450 °C WHSV = 15000 mL/(g·h), p = 0.1 MPa

    Figure  11.  XRD patterns of reduced catalysts (a): 20L-N/AZ700R; (b): 30L-N/AZ700R

    reduction conditions: 600 °C for 2 h

    Figure  12.  Representative TEM images

    (a) and (b): after reduction of 20L-N/AZ700; (c) and (d) after stability test of 20L-N/AZ700; (e) and (f): after reduction of 30L-N/AZ700; (g) and (h) after stability test of 30L-N/AZ700

    Figure  13.  Schematic diagram of the state of the 20L-N/AZ700 and 30L-N/AZ700 catalysts before and after reduction

    Table  1.   Physical properties of AZ700 support and yL-N/AZ700 catalysts

    Sample SBET a/(m2·g−1)Pore size a/nmPore volume a/(cm3·g−1)Nib/%The proportion of the reduction peaks c/%
    peak1peak2peak3peak4
    AZ70055.816.80.614
    10L-N/AZ70081.911.20.4121.3100
    20L-N/AZ70072.812.00.3872.7425.312.18.953.7
    30L-N/AZ70068.110.60.2961.9615.629.231.523.7
    40LN/AZ70038.013.00.2705.1631.616.634.017.8
    a: specific surface area of the supports and as-prepared samples were calculated using Brumauer-Emmett-Teller (BET) modeling;
    b: surface nickel atom fraction determined by XPS; c: the proportion of the different reduction peaks areas through H2-TPR
    下载: 导出CSV
  • [1] LIU Q, SUN J, FENG Q. A La-promoted Ni/MgAl2O4 catalyst with superior methanation performance for the production of synthetic natural gas[J]. Catal Today,2020,339:127−134. doi: 10.1016/j.cattod.2019.07.034
    [2] RONSCH S, SCHNEIDER J, MATTHISCHKE S. Review on methanation - From fundamentals to current projects[J]. Fuel,2016,166:276−296. doi: 10.1016/j.fuel.2015.10.111
    [3] HAN Y, QUAN Y, HAO P. Highly anti-sintering and anti-coking ordered mesoporous silica carbide supported nickel catalyst for high temperature CO methanation[J]. Fuel,2019,257:116006.
    [4] KAMATA H, TIAN Z Q, IZUMI Y. Dispersed and high loading Ni catalyst stabilized in porous SiO2 matrix for substituted natural gas production[J]. Catal Today,2018,299:193−200. doi: 10.1016/j.cattod.2017.03.003
    [5] ZHANG A H, ZHU J, DUAN W H. CO methanation on Ni(111) and modified Ni3Al(111) surfaces: A first-principle study[J]. Surf Sci,2007,601(2):475−478. doi: 10.1016/j.susc.2006.10.009
    [6] CASTILLO J, ARTEAGA-PÉREZ L E, KARELOVIC A. The consequences of surface heterogeneity of cobalt nanoparticles on the kinetics of CO methanation[J]. Catal Sci Technol,2019,9(22):6415−6427. doi: 10.1039/C9CY01753D
    [7] CHEN S, ABDEL-MAGEED A M, GAUCKLER C. Selective CO methanation on isostructural Ru nanocatalysts: The role of support effects[J]. J Catal,2019,373:103−115. doi: 10.1016/j.jcat.2019.03.015
    [8] ABDEL-MAGEED A M, WIDMANN D, OLESEN S E. Selective CO methanation on highly active Ru/TiO2 catalysts: Identifying the physical origin of the observed activation/deactivation and loss in selectivity[J]. ACS Catal,2018,8(6):5399−5414. doi: 10.1021/acscatal.8b00384
    [9] FAJÍN J L C, GOMES J R B, D. S. CORDEIRO M N. Mechanistic study of carbon monoxide methanation over pure and rhodium- or ruthenium-doped nickel catalysts[J]. J Phys Chem C,2015,119(29):16537−16551. doi: 10.1021/acs.jpcc.5b01837
    [10] JENEWEIN B, FUCHS M, HAYEK K. The CO methanation on Rh/CeO2 and CeO2/Rh model catalysts: A comparative study[J]. Surf Sci. 2003, 532−535: 364-369.
    [11] HU X, YAN W, DING W. Bifunctional palladium composite membrane for hydrogen separation and catalytic CO methanation[J]. Chin J Catal,2013,34(9):1720−1729. doi: 10.1016/S1872-2067(12)60636-6
    [12] LI S, GONG D, TANG H. Preparation of bimetallic Ni@Ru nanoparticles supported on SiO2 and their catalytic performance for CO methanation[J]. Chem Eng J,2018,334:2167−2178. doi: 10.1016/j.cej.2017.11.124
    [13] ZHAO B, YAO Y, SHI H. Preparation of Ni/SiO2 catalyst via novel plasma-induced micro-combustion method[J]. Catal Today,2019,337:28−36. doi: 10.1016/j.cattod.2019.04.068
    [14] ROMBI E, CUTRUFELLO M G, ATZORI L. CO methanation on Ni-Ce mixed oxides prepared by hard template method[J]. Appl Catal A:Gen,2016,515:144−153. doi: 10.1016/j.apcata.2016.02.002
    [15] ZHAI Y, XIONG J, LI C. Influence of preparation method on performance of a metal supported perovskite catalyst for combustion of methane[J]. J Rare Earths,2010,28(1):54−58. doi: 10.1016/S1002-0721(09)60050-8
    [16] GONG D, LI S, GUO S. Lanthanum and cerium co-modified Ni/SiO2 catalyst for CO methanation from syngas[J]. Appl Surf Sci,2018,434:351−364. doi: 10.1016/j.apsusc.2017.10.179
    [17] HWANG S, HONG U G, LEE J. Methanation of carbon dioxide over mesoporous nickel-M-alumina (M = Fe, Zr, Ni, Y, and Mg) xerogel catalysts: Effect of second metal[J]. Catal Lett,2012,142(7):860−868. doi: 10.1007/s10562-012-0842-0
    [18] JIANG P, ZHAO J, HAN Y. Highly active and dispersed Ni/Al2O3 catalysts for CO methanation prepared by the cation-anion double-hydrolysis method: Effects of Zr, Fe, and Ce promoters[J]. Ind Eng Chem Res,2019,58(27):11728−11738. doi: 10.1021/acs.iecr.9b00002
    [19] LI Z, ZHAO T, ZHANG L. Promotion effect of additive Fe on Al2O3 supported Ni catalyst for CO2 methanation[J]. Appl Organomet Chem,2018,32(5).
    [20] PHUNG T K, PHAM T L M, NGUYEN A-N T. Effect of supports and promoters on the performance of Ni-based catalysts in ethanol steam reforming[J]. Chem Eng Technol,2020,43(4):672−688.
    [21] ZHANG M, YU F, LI J. High CO methanation performance of two-dimensional Ni/MgAl layered double oxide with enhanced oxygen vacancies via flash nanoprecipitation[J]. Catalysts,2018,8(9).
    [22] DING C, GAO X, HAN Y. Effects of surface states over core-shell Ni@SiO2 catalysts on catalytic partial oxidation of methane to synthesis gas[J]. J Energy Chem,2015,24(1):45−53. doi: 10.1016/S2095-4956(15)60283-2
    [23] SI J, LIU G, LIU J. Ni nanoparticles highly dispersed on ZrO2 and modified with La2O3 for CO methanation[J]. RSC Adv,2016,6(15):12699−12707. doi: 10.1039/C5RA26888E
    [24] HAN Y, WEN B, ZHU M. Lanthanum incorporated in MCM-41 and its application as a support for a stable Ni-based methanation catalyst[J]. J Rare Earths,2018,36(4):367−373. doi: 10.1016/j.jre.2017.07.016
    [25] RABELO-NETO R C, SALES H B E, INOCÊNCIO C V M. CO2 reforming of methane over supported LaNiO3 perovskite-type oxides[J]. Appl Catal B: Environ,2018,221:349−361. doi: 10.1016/j.apcatb.2017.09.022
    [26] ZHAO L, HAN T, WANG H. Ni-Co alloy catalyst from LaNi1−xCoxO3 perovskite supported on zirconia for steam reforming of ethanol[J]. Appl Catal B: Environ,2016,187:19−29. doi: 10.1016/j.apcatb.2016.01.007
    [27] WANG X, ZHU L, ZHUO Y. Enhancement of CO2 methanation over La-Modified Ni/SBA-15 catalysts prepared by different doping methods[J]. ACS Sustainable Chem Eng,2019,7(17):14647−14660. doi: 10.1021/acssuschemeng.9b02563
    [28] LIU Q, GU F, GAO J. Coking-resistant Ni-ZrO2/Al2O3 catalyst for CO methanation[J]. J Energy Chem,2014,23(6):761−770. doi: 10.1016/S2095-4956(14)60210-2
    [29] ZHANG X, RUI N, JIA X. Effect of decomposition of catalyst precursor on Ni/CeO2 activity for CO methanation[J]. Chin J Catal,2019,40(4):495−503. doi: 10.1016/S1872-2067(19)63289-4
    [30] NGUYEN T T M, WISSING L, SKJØTH-RASMUSSEN M S. High temperature methanation: Catalyst considerations[J]. Catal Today,2013,215:233−238. doi: 10.1016/j.cattod.2013.03.035
    [31] GUO C, WU Y, QIN H. CO methanation over ZrO2/Al2O3 supported Ni catalysts: A comprehensive study[J]. Fuel Process Technol,2014,124:61−69. doi: 10.1016/j.fuproc.2014.02.017
    [32] LIN J, MA C, WANG Q. Enhanced low-temperature performance of CO2 methanation over mesoporous Ni/Al2O3-ZrO2 catalysts[J]. Appl Catal B: Environ,2019,243:262−272. doi: 10.1016/j.apcatb.2018.10.059
    [33] LI L, HUO M, ZHANG Y. Synthesis of nickel catalysts supported on Zr-doped ordered mesoporous Al2O3 and their catalytic performance for low-temperature CO2 reforming of CH4[J]. J Porous Mater,2017,24(6):1613−1625. doi: 10.1007/s10934-017-0401-6
    [34] SOUZA M M V M, ARANDA D A G, SCHMAL M. Reforming of methane with carbon dioxide over Pt/ZrO2/Al2O3 catalysts[J]. J Catal,2001,204(2):498−511. doi: 10.1006/jcat.2001.3398
    [35] SONG J H, HAN S J, SONG I K. Hydrogen production by steam reforming of ethanol over mesoporous Ni-Al2O3-ZrO2 catalysts[J]. Catal Surv Asia,2017,21(3):114−129. doi: 10.1007/s10563-017-9230-5
    [36] MORADI G R, RAHMANZADEH M, KHOSRAVIAN F. The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for methane dry reforming[J]. J CO2 Util,2014,6:7−11. doi: 10.1016/j.jcou.2014.02.001
    [37] WANG S, ZHANG L, ZHANG W Y. Selective conversion of CO2 into propene and butene[J]. Chem,2020,6:1−20. doi: 10.1016/j.chempr.2019.12.023
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  14
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-24
  • 修回日期:  2020-11-09
  • 刊出日期:  2021-02-08

目录

    /

    返回文章
    返回