留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuO修饰的Cu1.5Mn1.5O4尖晶石型复合氧化物对CO氧化的协同催化

孙若琳 张斯然 安康 宋鹏飞 刘源

孙若琳, 张斯然, 安康, 宋鹏飞, 刘源. CuO修饰的Cu1.5Mn1.5O4尖晶石型复合氧化物对CO氧化的协同催化[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60032-4
引用本文: 孙若琳, 张斯然, 安康, 宋鹏飞, 刘源. CuO修饰的Cu1.5Mn1.5O4尖晶石型复合氧化物对CO氧化的协同催化[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60032-4
SUN Ruo-lin, ZHANG Si-ran, AN Kang, SONG Peng-fei, LIU Yuan. Cu1.5Mn1.5O4 spinel type composite oxide modified with CuO for Synergistic catalysis of CO oxidation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60032-4
Citation: SUN Ruo-lin, ZHANG Si-ran, AN Kang, SONG Peng-fei, LIU Yuan. Cu1.5Mn1.5O4 spinel type composite oxide modified with CuO for Synergistic catalysis of CO oxidation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60032-4

CuO修饰的Cu1.5Mn1.5O4尖晶石型复合氧化物对CO氧化的协同催化

doi: 10.1016/S1872-5813(21)60032-4
基金项目: 国家自然科学基金(21872101和21576192)和天津市生态环境治理科技重大专项项目(18ZXSZSF00070)资助
详细信息
    作者简介:

    孙若琳:ruolinsun@tju.edu.cn

    通讯作者:

    Tel: 13132168084, E-mail: siran@tju.edu.cn

  • 中图分类号: O643

Cu1.5Mn1.5O4 spinel type composite oxide modified with CuO for Synergistic catalysis of CO oxidation

Funds: The project was supported by the Natural Science Foundation of China (21872101, 21576192), Science and Technology Program of Tianjin, China (18ZXSZSF00070)
  • 摘要: 铜锰复合氧化物是常用的氧化反应催化剂,一般认为铜锰尖晶石是活性组分;同时氧化铜和氧化锰也具有催化活性,但性能较差。本研究发现Cu1.5Mn1.5O4和CuO的协同效应能促进CO的催化氧化。催化剂以柠檬酸络合法制备,采用氮气吸附-脱附、XRD、H2-TPR、TEM、CO-TPD和O2-TPD等手段对系列催化剂进行了表征,测试了对CO氧化的催化性能。结果表明,CuO修饰的Cu1.5Mn1.5O4具有最好的催化性能和最高的单位表面活性(以单位表面积CO转化率计),表明CuO与Cu1.5Mn1.5O4存在协同作用。认为协同作用源自CuO活化的O2和Cu1.5Mn1.5O4活化的CO结合生成CO2提高了活性。
  • 图  1  12种不同煅烧温度的催化剂的低温CO氧化活性 (a)350 ℃,(b) 450 ℃,(c) 550 ℃,(d) 650 ℃

    Figure  1.  Low-temperature CO oxidation activity of 12 different catalysts with different calcined temperature at (a) 350 ℃; (b) 450 ℃; (c) 550 ℃ and (d) 650 ℃. Reaction conditions: Catalyst weight 0.10 g; CO 1%, O2 1%, N2 balance; WHSV = 24000 mL/(gcat·h)

    图  2  不同催化剂的CO氧化性能测试

    Figure  2.  The catalytic oxidation of CO over the Cu-Mn catalysts with various Cu/Mn molar ratio. Catalyst weight 0.10 g; CO 1%, O2 1%, N2 balance; WHSV = 24000 mL/(gcat·h)

    图  3  不同催化剂的N2吸附-脱附曲线(a)和孔径分布图(b)

    Figure  3.  N2 adsorption-desorption isotherms (a) and pore size distribution curves (b) of the studied samples

    图  4  不同样品的XRD图谱

    Figure  4.  XRD patterns of samples

    图  5  催化反应后不同样品的XRD图谱

    Figure  5.  XRD patterns of prepared samples after catalytic reaction

    图  6  不同样品的H2-TPR图

    Figure  6.  H2-TPR profiles of the prepared catalysts

    图  7  CuO-Cu1.5Mn1.5O4、Mn3O4-Cu1.5Mn1.5O4、Cu1.5Mn1.5O4样品的TEM图和HRTEM图

    Figure  7.  TEM images and HRTEM images of CuO-Cu1.5Mn1.5O4 samples: (a), (a'), (a''); Mn3O4-Cu1.5Mn1.5O4 samples: (b), (b'), (b''); Cu1.5Mn1.5O4 samples: (c), (c')

    图  8  (a)不同催化剂的CO-TPD图线和(b)局部放大的TPD谱图

    Figure  8.  CO-TPD profiles of (a) the different catalysts; (b) partially enlarged of (a)

    图  9  (a) 不同催化剂的O2-TPD图线和(b)局部放大的TPD谱图

    Figure  9.  O2-TPD profiles of (a) the different catalysts; (b) partially enlarged of (a)

    图  10  反应路径示意图

    Figure  10.  Proposed schematic illustrations of reaction paths

    表  1  低温下(80度)Cu-Mn复合氧化物单位面积CO氧化的本征活性

    Table  1.   The unit surface activity of samples at low temperature (80 ℃)

    CatalystSBET(m2 g−1)Rate per catalyst surface area/
    × 10−5 mol min−1 m−2
    CuO-Cu1.5Mn1.5O47.06.3
    Mn3O4-Cu1.5Mn1.5O411.12.7
    Cu1.5Mn1.5O413.22.5
    下载: 导出CSV

    表  2  不同样品的物理性质

    Table  2.   Physical properties of the studied samples

    SampleSBET(m2 g−1)dpore(nm)Vpore(cm3 g−1)
    Mn3O4-Cu1.5Mn1.5O411.1120.10
    Cu1.5Mn1.5O413.2180.10
    CuO-Cu1.5Mn1.5O47.0190.06
    下载: 导出CSV

    表  3  不同催化剂的晶粒尺寸

    Table  3.   The grain size of different catalysts

    CatalystGrain size
    (before reaction)
    Grain size
    (after reaction)
    Mn3O4-Cu1.5Mn1.5O422.1 nm21.3 nm
    Cu1.5Mn1.5O429.9 nm32.8 nm
    CuO-Cu1.5Mn1.5O411.5 nm12.0 nm
    下载: 导出CSV

    表  4  Mn3O4-Cu1.5Mn1.5O4、Cu1.5Mn1.5O4和CuO-Cu1.5Mn1.5O4样品的还原峰面积

    Table  4.   Reduction peak area of the Mn3O4-Cu1.5Mn1.5O4, Cu1.5Mn1.5O4 and CuO-Cu1.5Mn1.5O4 catalysts

    CatalystReduction peak area(a.u.)
    Mn3O4-Cu1.5Mn1.5O490020.88
    Cu1.5Mn1.5O495156.94
    CuO-Cu1.5Mn1.5O4122509.36
    下载: 导出CSV
  • [1] FREUND H, MEIJER G, SCHEFFLER M, SCHLOGL R, WOLF M. CO oxidation as a prototypical reaction for heterogeneous processes[J]. Angew Chemie,2011,50(43):10064−10094. doi: 10.1002/anie.201101378
    [2] GURTU S, RAI S, EHARA M, PRIYAKUMAR U D. Ability of density functional theory methods to accurately model the reaction energy pathways of the oxidation of CO on gold cluster: A benchmark study[J]. Theor Chem Acc,2016,135(934).
    [3] FALSIG H, HVOLBAEK B, KRISTENSEN I S, JIANG T, BLIGAARD T, CHRISTENSEN C H, NORSKOV J K. Trends in the catalytic CO oxidation activity of nanoparticles[J]. Angew Chem Int Edit,2008,47(26):4835−4839. doi: 10.1002/anie.200801479
    [4] LI X, WANG L, MOU L, HE S. Catalytic CO oxidation by gas-phase metal oxide clusters[J]. J Phys Chem a,2019,123(43):9257−9267. doi: 10.1021/acs.jpca.9b05185
    [5] WANG L, LI X, HE S. Recent research progress in the study of catalytic CO oxidation by gas phase atomic clusters[J]. Sci China Mater,2020,63(6SI):892−902.
    [6] GUO Q, LIU Y. MnOx modified Co3O4-CeO2 catalysts for the preferential oxidation of CO in H2-rich gases[J]. Appl Catal B-Environ,2008,82(1-2):19−26. doi: 10.1016/j.apcatb.2008.01.007
    [7] HASEGAWA Y, MAKI R, SANO M, MIYAKE T. Preferential oxidation of CO on copper-containing manganese oxides[J]. Appl Catal A-Gen,2009,371(1-2):67−72. doi: 10.1016/j.apcata.2009.09.028
    [8] LI J, ZHU P, ZUO S, HUANG Q, ZHOU R. Influence of Mn doping on the performance of CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich streams[J]. Appl Catal A-Gen,2010,381(1-2):261−266. doi: 10.1016/j.apcata.2010.04.020
    [9] THERRIEN A J, HENSLEY A J R, MARCINKOWSKI M D, ZHANG R, LUCCI F R, COUGHLIN B, SCHILLING A C, MCEWEN J, SYKES E C H. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation[J]. Nat Catal,2018,1(3):192−198. doi: 10.1038/s41929-018-0028-2
    [10] KUNG H H, KUNG M C, COSTELLO C K. Supported Au catalysts for low temperature CO oxidation[J]. J Catal,2003,216(1-2):425−432. doi: 10.1016/S0021-9517(02)00111-2
    [11] SATSUMA A, OSAKI K, YANAGIHARA M, OHYAMA J, SHIMIZU K. Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts[J]. Appl Catal B-Environ,2013,132:511−518.
    [12] JOO S H, PARK J Y, RENZAS J R, BUTCHER D R, HUANG W, SOMORJAI G A. Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation[J]. Nano Lett,2010,10(7):2709−2713. doi: 10.1021/nl101700j
    [13] ROYER S, DUPREZ D. Catalytic oxidation of carbon monoxide over transition metal oxides[J]. Chemcatchem,2011,3(1):24−65. doi: 10.1002/cctc.201000378
    [14] LANG Y, ZHANG J, FENG Z, LIU X, ZHU Y, ZENG T, ZHAO Y, CHEN R, SHAN B. CO oxidation over MOx (M = Mn, Fe, Co, Ni, Cu) supported on SmMn2O5 composite catalysts[J]. Catal Sci Technol,2018,8(21):5490−5497. doi: 10.1039/C8CY01263F
    [15] WOJCIECHOWSKA M, MALCZEWSKA A, CZAJKA B, ZIELINSKI M, GOSLAR J. The structure and catalytic activity of the double oxide system Cu-Mn-O/MgF2[J]. Appl Catal A-Gen,2002,237(1-2):63−70. doi: 10.1016/S0926-860X(02)00297-1
    [16] GUO Y, LIN J, LI C, LU S, ZHAO C. Copper manganese oxides supported on multi-walled carbon nanotubes as an efficient catalyst for low temperature CO oxidation[J]. Catal Lett,2016,146(11):2364−2375. doi: 10.1007/s10562-016-1869-4
    [17] CAI L, GUO Y, LU A, BRANTON P, LI W. The choice of precipitant and precursor in the co-precipitation synthesis of copper manganese oxide for maximizing carbon monoxide oxidation[J]. J Mol Catal A-Chem,2012,360:35−41. doi: 10.1016/j.molcata.2012.04.003
    [18] DEY S, DHAL G C, MOHAN D, PRASAD R. The choice of precursors in the synthesizing of CuMnOx catalysts for maximizing CO oxidation[J]. Int J Ind Ergonom,2018,9(3):199−214.
    [19] JAIN N, ROY A. Phase & morphology engineered surface reducibility of MnO2 nano-heterostructures: Implications on catalytic activity towards CO oxidation[J]. Mater Res Bull,2020,121(110615).
    [20] LUO M F, FANG P, HE M, XIE Y L. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. J Mol Catal A-Chem,2005,239(1-2):243−248. doi: 10.1016/j.molcata.2005.06.029
    [21] BUCIUMAN F C, PATCAS F, HAHN T. A spillover approach to oxidation catalysis over copper and manganese mixed oxides[J]. Chem Eng Process,1999,38(4):563−569.
    [22] 张纪领, 尹燕华, 张志梅, 周智勇. CO低温氧化霍加拉特催化剂的研究综述[J]. 舰船防化,2007,(3):9−15.

    ZHANG Ji-ling, YIN Yan-hua, ZHANG Zhi-mei, ZHOU Zhi-yong. Review of Hopcalite Catalyst for Carbon Monoxide Low-Temperature Oxidation[J]. Chem Def on Ships,2007,(3):9−15.
    [23] QIAN K, QIAN Z, HUA Q, JIANG Z, HUANG W. Structure-activity relationship of CuO/MnO2 catalysts in CO oxidation[J]. Appl Surf Sci,2013,273:357−363. doi: 10.1016/j.apsusc.2013.02.043
    [24] SCHWAB G M, KANUNGO S B. Die katalytische Verstärkung im Hopcalit[J]. Zeitschrift für Physikalische Chemie,1977,107(1):109−120.
    [25] FORTUNATO G, OSWALD H R, RELLER A. Spinel-type oxide catalysts for low temperature CO oxidation generated by use of an ultrasonic aerosol pyrolysis process[J]. J Mater Chem,2001,11(3):905−911. doi: 10.1039/b007306g
    [26] TANG Z R, KONDRAT S A, DICKINSON C, BARTLEY J K, CARLEY A F, TAYLOR S H, DAVIES T E, ALLIX M, ROSSEINSKY M J, CLARIDGE J B, XU Z, ROMANI S, CRUDACE M J, HUTCHINGS G J. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature[J]. Catal Sci Technol,2011,1(5):740−746. doi: 10.1039/c1cy00064k
    [27] CAI L, GUO Y, LU A, BRANTON P, LI W. The choice of precipitant and precursor in the co-precipitation synthesis of copper manganese oxide for maximizing carbon monoxide oxidation[J]. J Mol Catal A-Chem,2012,360:35−41. doi: 10.1016/j.molcata.2012.04.003
    [28] EINAGA H, KIYA A, YOSHIOKA S, TERAOKA Y. Catalytic properties of copper-manganese mixed oxides prepared by coprecipitation using tetramethylammonium hydroxide[J]. Catal Sci Technol,2014,4(10):3713−3722. doi: 10.1039/C4CY00660G
    [29] LIU T, YAO Y, WEI L, SHI Z, HAN L, YUAN H, LI B, DONG L, WANG F, SUN C. Preparation and evaluation of copper manganese oxide as a high-efficiency catalyst for CO oxidation and NO reduction by CO[J]. J Phys Chem C,2017,121(23):12757−12770. doi: 10.1021/acs.jpcc.7b02052
    [30] RO I, ARAGAO I B, CHADA J P, LIU Y, RIVERA-DONES K R, BALL M R, ZANCHET D, DUMESIC J A, HUBER G W. The role of Pt-FexOy interfacial sites for CO oxidation[J]. J Catal,2018,358:19−26. doi: 10.1016/j.jcat.2017.11.021
    [31] LIU M, CHEN Y, LIN T, MOU C. Defective mesocrystal ZnO-supported gold catalysts: facilitating CO oxidation via vacancy defects in ZnO[J]. Acs Catal,2018,8(8):6862−6869. doi: 10.1021/acscatal.8b01282
    [32] YANG T, FUKUDA R, HOSOKAWA S, TANAKA T, SAKAKI S, EHARA M. A Theoretical investigation on CO oxidation by single-atom catalysts M1/γ-Al2O3(M = Pd, Fe, Co, and Ni)[J]. Chemcatchem,2017,9(7):1222−1229. doi: 10.1002/cctc.201601713
    [33] MA B, KONG C, LÜ J, ZHANG X, YANG S, YANG T, YANG Z. Cu-Cu2O Heterogeneous architecture for the enhanced CO catalytic oxidation[J]. Adv Mater Interfaces,2020,7(19016437).
    [34] LEOFANTI G, PADOVAN M, TOZZOLA G, VENTURELLI B. Surface area and pore texture of catalysts[J]. Catal Today,1998,41(1-3):207−219. doi: 10.1016/S0920-5861(98)00050-9
    [35] LI Y, PENG H, XU X, PENG Y, WANG X. Facile preparation of mesoporous Cu-Sn solid solutions as active catalysts for CO oxidation[J]. Rsc Adv,2015,5(33):25755−25764. doi: 10.1039/C5RA00635J
    [36] LI F, ZHANG R, LI Q, ZHAO S. Preparation of ultrafine Cu1.5Mn1.5O4 spinel nanoparticles and its application in p-nitrophenol reduction[J]. Res Chem Intermediat,2017,43(11):6505−6519. doi: 10.1007/s11164-017-3001-9
    [37] MA P, GENG Q, GAO X, YANG S, LIU G. Spectrally selective Cu1.5Mn1.5O4 spinel ceramic pigments for solar thermal applications[J]. Rsc Adv,2016,6:32947. doi: 10.1039/C6RA03300H
    [38] ZHANG M, LI W, WU X, ZHAO F, WANG D, ZHA X, LI S, LIU H, CHEN Y. Low-temperature catalytic oxidation of benzene over nanocrystalline Cu–Mn composite oxides by facile sol–gel synthesis[J]. New Journal of Chemistry,2020,44(6):2442−2451. doi: 10.1039/C9NJ05097C
    [39] JEON W, CHOI I, PARK J, LEE J, HWANG K. Alkaline wet oxidation of lignin over Cu-Mn mixed oxide catalysts for production of vanillin[J]. Catal Today,2020,352(SI):95−103.
    [40] TANG X, FEI J, HOU Z, ZHENG X, LOU H. Characterization of Cu−Mn/Zeolite-Y catalyst for one-step synthesis of dimethyl ether from CO−H2[J]. Energ Fuel,2008,22(5):2877−2884. doi: 10.1021/ef800259e
    [41] WANG Y, LIU X, HU X, WU R, ZHAO Y. Preparation and characterization of Cu-Mn composite oxides in N2O decomposition[J]. React Kinet Mech Cat,2020,129(1):165−179. doi: 10.1007/s11144-019-01691-w
    [42] TABAKOVA T, IDAKIEV V, AVGOUROPOULOS G, PAPAVASILIOU J, MANZOLI M, BOCCUZZI F, IOANNIDES T. Highly active copper catalyst for low-temperature water-gas shift reaction prepared via a Cu-Mn spinel oxide precursor[J]. Appl Catal A-Gen,2013,451:184−191. doi: 10.1016/j.apcata.2012.11.025
    [43] LI Z, WANG H, WU X, YE Q, XU X, LI B, WANG F. Novel synthesis and shape-dependent catalytic performance of Cu-Mn oxides for CO oxidation[J]. Appl Surf Sci,2017,403:335−341. doi: 10.1016/j.apsusc.2017.01.169
    [44] MORALES M R, BARBERO B P, CADUS L E. Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts[J]. Appl Catal B-Environ,2006,67(3-4):229−236. doi: 10.1016/j.apcatb.2006.05.006
    [45] PAPAVASILIOU J, AVGOUROPOULOS G, IOANNIDES T. Combined steam reforming of methanol over Cu-Mn spinel oxide catalysts[J]. J Catal,2007,251(1):7−20. doi: 10.1016/j.jcat.2007.07.025
    [46] VEPREK S, COCKE D L, KEHL S, OSWALD H R. Mechanism of the deactivation of Hopcalite Catalysts Studied by XPS, ISS, and other techniques[J]. J Catal,1986,100:250−263. doi: 10.1016/0021-9517(86)90090-4
    [47] CHEN Y, LIU D, YANG L, MENG M, ZHANG J, ZHENG L, CHU S, HU T. Ternary composite oxide catalysts CuO/Co3O4-CeO2 with wide temperature-window for the preferential oxidation of CO in H2-rich stream[J]. Chem Eng J,2013,234:88−98. doi: 10.1016/j.cej.2013.08.063
    [48] KIMI M, JAIDIE M M H, PANG S C. Bimetallic Cu-Ni nanoparticles supported on activated carbon for catalytic oxidation of benzyl alcohol[J]. J Phys Chem Solids,2018,112:50−53.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回