留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同拓扑结构分子筛催化1-甲萘异构化-烷基转移耦合反应性能对比

李洪涛 盛路阳 展俊岭 房伟贤 梁翌 张钰

李洪涛, 盛路阳, 展俊岭, 房伟贤, 梁翌, 张钰. 不同拓扑结构分子筛催化1-甲萘异构化-烷基转移耦合反应性能对比[J]. 燃料化学学报(中英文), 2021, 49(6): 809-817. doi: 10.1016/S1872-5813(21)60035-X
引用本文: 李洪涛, 盛路阳, 展俊岭, 房伟贤, 梁翌, 张钰. 不同拓扑结构分子筛催化1-甲萘异构化-烷基转移耦合反应性能对比[J]. 燃料化学学报(中英文), 2021, 49(6): 809-817. doi: 10.1016/S1872-5813(21)60035-X
LI Hong-tao, SHENG Lu-yang, ZHAN Jun-ling, FANG Wei-xian, LIANG Yi, ZHANG Yu. Comparative study on the catalytic performance of zeolite catalysts with different topologies in 1-methylnaphthalene isomerization-transalkylation coupling reaction[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 809-817. doi: 10.1016/S1872-5813(21)60035-X
Citation: LI Hong-tao, SHENG Lu-yang, ZHAN Jun-ling, FANG Wei-xian, LIANG Yi, ZHANG Yu. Comparative study on the catalytic performance of zeolite catalysts with different topologies in 1-methylnaphthalene isomerization-transalkylation coupling reaction[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 809-817. doi: 10.1016/S1872-5813(21)60035-X

不同拓扑结构分子筛催化1-甲萘异构化-烷基转移耦合反应性能对比

doi: 10.1016/S1872-5813(21)60035-X
基金项目: 吉林省科技发展计划项目(20200401029GX, 20180201101GX)资助
详细信息
    作者简介:

    李洪涛:1445568181@qq.com

    通讯作者:

    Tel:0432-62185139,E-mail:zhang99yu@hotmail.com

  • 中图分类号: TQ203.2

Comparative study on the catalytic performance of zeolite catalysts with different topologies in 1-methylnaphthalene isomerization-transalkylation coupling reaction

Funds: The project was supported by the Science and Technology Development Foundation of Jilin Province (20200401029GX, 20180201101GX)
  • 摘要: 以1-甲萘和均三甲苯为原料经固体酸催化的异构化-烷基转移耦合反应制备2-甲萘及二甲基萘。对MWW、BEA、FAU、MFI拓扑结构分子筛的催化性能进行对比研究,对反应机理进行探讨。采用XRD、BET、SEM、NH3-TPD、Py-FTIR及ICP等方法对催化剂结构物性进行了表征。与具有十元环特征孔道的MFI分子筛相比,具有十二元环特征孔道的MWW、BEA、FAU分子筛表现出更好的催化活性。BEA结构分子筛具有较高的二甲基萘选择性,而MWW结构分子筛具有较高的2-甲萘选择性并表现出优异的催化稳定性。在MWW结构分子筛中,HMCM-22的1-甲萘转化率达到70.27%,2-甲萘收率达到66.69%。而HMCM-56上则同时获得35.74%的2-甲萘收率和19.00%的二甲基萘收率。该研究为以中国丰富的碳十资源为原料制备高端聚酯单体2,6-二甲基萘开辟了颇具潜力的技术路线。
  • FIG. 729.  FIG. 729.

    FIG. 729.  FIG. 729.

    图  1  样品的XRD谱图

    Figure  1  XRD patterns of the samples

    图  2  样品的氮气吸附-脱附等温线

    Figure  2  N2 adsorption-desorption isotherms of the samples

    图  3  样品的SEM照片

    Figure  3  SEM images of the samples

    (a): HZSM-5; (b): HY; (c): HBeta; (d): HMCM-22; (e): HMCM-49; (f): HMCM-56

    图  4  样品的NH3-TPD谱图

    Figure  4  NH3-TPD profiles of the samples

    图  5  样品的Py-FTIR谱图

    Figure  5  Py-FTIR spectra of the samples

    图  6  分子筛催化异构化-烷基转移耦合反应催化稳定性

    Figure  6  Catalytic stability of zeolites in the isomerization-transalkylation of 1-methylnaphthalene with 1,3,5-trimethylbenzene

    (reaction conditions: t = 400 ℃, WHSV1-MN = 0.5 h−1, n1-MN/nTMB = 1/3, p = 0.2 MPa)

    图  7  1-MN与1,3,5-TMB异构化-烷基转移耦合反应产物的质谱图

    Figure  7  Mass spectrometric analysis of the coupling reaction of 1-MN and 1,3,5-TMB isomerization-transalkylation

    1: benzene; 2: toluene; 3–4: dimethylbenzene; 5: 1-ethyl-2-methylbenzene; 6: 1,3,5-trimethylbenzene; 7: 1,2,3-TMB (1,2,3-trimethylbenzene); 8: 1,2,4-TMB (1,2,4-trimethylbenzene; 9–12: tetramethylbenzene; 13: naphthalene; 14: 2-methylnaphthalene; 15: 1-methylnaphthalene;16: dimethylnaphthalene; 17: trimethylnaphthalene; 18: polymethyl naphthalene

    图  8  1-甲萘与均三甲苯异构化-烷基转移耦合反应机理

    Figure  8  Mechanism diagram of the isomerization-transalkylation coupling reaction of 1-methylnaphthalene with 1,3,5-trimethylbenzene

    表  1  样品的孔结构参数

    Table  1  Textural properties of the samples

    SampleABET/
    (m2∙g−1)
    Aext /
    (m2∙g−1)
    vtotal/
    (cm3∙g−1)
    vmic/
    (cm3∙g−1)
    vmes/
    (cm3∙g−1)
    Aext/
    ABET
    HZSM-5326870.240.090.100.48
    HBeta5801600.500.190.320.27
    HY6351380.470.400.080.21
    HMCM-224441060.680.140.560.24
    HMCM-49447860.760.150.640.19
    HMCM-564991771.320.131.230.36
    下载: 导出CSV

    表  2  元素组成、NH3-TPD和Py-FTIR测试

    Table  2  Element composition, NH3-TPD and Py-FTIR results

    SampleSiO2/Al2O3a Desorption peak area of NH3-TPDb RcAcidity /(μmol∙g−1)Brønsted/Lewis
    A1(100−250 ℃)A2(250−400 ℃)A3(400−550 ℃)BrønstedLewis
    HZSM-524.2134557010390.5
    HY5.188613836000.7
    HBeta17.880516920.7631180.5
    HMCM-2213.13689060.7124612.0
    HMCM-499.695816730.62871032.8
    HMCM-5611.8122712300.5209673.1
    a: measured by ICP method; b: calculated by Gaussian fitting method; c: (A2 + A3) to (A1 + A2 + A3) ratio
    下载: 导出CSV

    表  3  分子筛催化异构化-烷基转移耦合反应催化性能a

    Table  3  Catalytic performance of isomerization-transalkylation of 1-MN with 1,3,5-TMB over zeolites a

    CatalystsHZSM-5HMCM-22HMCM-49HMCM-56HBetaHY
    Conversion x/%
    1-MN77.5670.2778.0480.7093.3489.71
    1,3,5-TMB28.1463.5369.5876.8880.6350.93
    Distributionb s/%
    2-MN91.1694.4689.2855.5413.7429.00
    DMNs5.562.535.2829.5242.7635.95
    TMNs1.202.141.857.3932.5315.63
    NP2.080.873.597.5510.9719.42
    Yieldc w/%
    2-MN37.0566.3457.6635.747.5316.70
    DMNs2.261.823.4119.0023.4120.69
    2,6-DMN/DMNs0.550.370.410.350.380.34
    Yieldd w/%
    2-MN5.5866.6955.9552.6953.1852.29
    DMNs2.040.932.469.235.326.15
    2,6-DMN/DMNs0.500.460.380.360.410.37
    a: t = 400 ℃, WHSV1-MN = 0.5 h−1, n1-MN/nTMB = 1/3, p = 0.2 MPa, T.O.S = 1 h
    b: Mole of specific product×100/mole of 1-MN derivatives, including NP (naphthalene), 2-MN (2-methylnaphthalene), DMNs (dimethyl naphthalene) and TMNs (trimethyl naphthalene)
    c: Mole of 2-MN (or DMNs) in product×100/mole of 1-MN in raw materials,T.O.S = 1 h
    d: T.O.S = 6 h
    下载: 导出CSV
  • [1] 唐文秀. 从炼焦洗油中分离提纯β-甲基萘的研究[J]. 石油化工应用,2018,37(10):97−100. doi: 10.3969/j.issn.1673-5285.2018.10.022

    TANG Wen-xiu. Study on separation and purification of β-methyl naphthalene from coking wash oil[J]. Chin Petroch Indus App,2018,37(10):97−100. doi: 10.3969/j.issn.1673-5285.2018.10.022
    [2] 田苗, 索隆宁, 田红, 魏元博. β-甲基萘氧化合成维生素K3(1,4-甲萘醌)的研究进展[J]. 云南化工,2019,46(8):51−52. doi: 10.3969/j.issn.1004-275X.2019.08.018

    TIAN Miao, SUO Long-ning, TIAN Hong, WEI Yuan-bo. Research progress of β-methylnaphthalene oxidation to synthesize vitamin K3 (1,4-menadione)[J]. Yunnan Chem Technol,2019,46(8):51−52. doi: 10.3969/j.issn.1004-275X.2019.08.018
    [3] LI C, LI L, WU W, DONGSHENG W, TOKTAREV A V, KIKHTYANIN O V, ECHEVSKII G V. Highly selective synthesis of 2,6-dimethylnaphthalene over alkaline treated ZSM-12 zeolite[J]. Procedia Eng,2011,18:200−205. doi: 10.1016/j.proeng.2011.11.032
    [4] NIE X, JANIK M J, GUO X, WANG X, SONG C, LIU H. Shape-selective methylation of 2-methylnaphthalene with methanol over H-ZSM–5 zeolite: A computational study[J]. J Phys Chem C,2015,116(6):4071−4082.
    [5] ZHANG C, GUO X W, SONG C S, ZHAO S Q, WANG X S. Effects of steam and TEOS modification on HZSM-5 zeolite for 2,6-dimethylnaphthalene synthesis by methylation of 2-methylnaphthalene with methanol[J]. Catal Today,2010,149(1/2):196−201. doi: 10.1016/j.cattod.2009.04.015
    [6] SANHOOB M A, MURAZA O, TAGO T, TANIGUCHI T, WATANABE G, MASUDA T. Development of mesoporous ZSM-12 zeolite and its application in alkylation of 2-methylnaphthalene[J]. Res Chem Intermed,2016,42(7):1−12.
    [7] 栾珊, 靳立军, 郭学华, 于泳, 胡浩权, 王亚涛. 介孔ZSM-5沸石的制备及在2-甲基萘甲基化反应中的应用[J]. 石油学报(石油加工),2014,30(2):204−204.

    LUAN Shan, ZHAN Li-jun, GUO Xue-hua, YU Yong, HU Hao-quan, WANG Ya-tao. Preparation of mesoporous ZSM-5 zeolite and its application in 2-methylnaphthalene methylation reaction[J]. Acta Pet Sin (Pet Process Sec),2014,30(2):204−204.
    [8] 吴伟, 吴维果, 李凌飞, 杨巍, 武光. 氟硅酸铵改性的HZSM-12分子筛催化合成2,6–二甲基萘[J]. 石油学报(石油加工),2010,26(2):189−194.

    WU W, LI L, YANG W, WU G. Shape-selective synthesis of 2,6-dimethylnaphthalene over (NH4)2SiF6-modified HZSM-12 Zeolite[J]. Acta Pet Sin (Pet Process Sect),2010,26(2):189−194.
    [9] 王潇潇, 刘振民, 温健, 张伟, 赵亮富. 水蒸气处理改性的SAPO-11分子筛催化合成2,6-二甲基萘的研究[J]. 分子催化,2015,29(4):331−338.

    WANG Xiao-xiao, LIU Zhen-min, WEN Jian, ZHANG Wei, ZHAO Liang-fu. Study on catalytic synthesis of 2,6-dimethylnaphthalene over SAPO-11 zeolites modified by steam[J]. J Mol Catal (China),2015,29(4):331−338.
    [10] FATHIH G, SHER F, KARADUMAN A. Catalytic performance of Cu- and Zr-modified beta zeolite catalysts in the methylation of 2-methylnaphthalene[J]. Pet Sci,2018,16:161−172.
    [11] 王亚涛, 张新异, 房承宣, 靳立军, 郭学华, 胡浩权. 中空ZSM-5分子筛的制备及其在2-甲基萘烷基化合成2,6-二甲基萘中的应用[J]. 石油化工,2012,41(12):1351−1356. doi: 10.3969/j.issn.1000-8144.2012.12.003

    WANG Ya-tao, ZHANG Xin-yi, FANG Chen-xuan, JIN Li-jun, HU Hao-quan. Preparation of hollow ZSM-5 and its application in methylation of 2-methylnaphthalene to 2,6-dimethylnaphthalene[J]. Chin Petrochem Technol,2012,41(12):1351−1356. doi: 10.3969/j.issn.1000-8144.2012.12.003
    [12] LI H J, GONG Q, LIAN H, DING L F, HU Z H, ZHU Z R. Transalkylation of C10 aromatics with 2-methylnaphthalene for 2,6-dimethylnaphthalene synthesis: High-efficiently shape-selective & synergistic catalysis over a multifunctional SiO2 -Mo-HBeta catalyst[J]. J Catal,2019,378:144−152. doi: 10.1016/j.jcat.2019.08.030
    [13] LI H J, GONG Q, LIAN H, HU Z H, ZHU Z R. New process for 2,6-dimethylnaphthalene synthesis by using C10 aromatics as solvent and transmethylation-agentia: High-efficiency and peculiar subarea-catalysis over shape-selective ZSM-5/Beta[J]. Ind Eng Chem Res,2019,58:12593−12601. doi: 10.1021/acs.iecr.9b01596
    [14] FERINO I, MONACI R, ROMBI E. Microcalorimetric investigation of mordenite and Y zeolites for 1-methylnaphthalene isomerisation[J]. J Chem Soc, Faraday Trans,1998,94(17):2647−2652. doi: 10.1039/a803931c
    [15] 栗同林, 刘希尧, 王祥生. β沸石对甲基萘歧化反应的择形性[J]. 催化学报,1997,18(3):48−51.

    LI Tong-lin, LIU Xi-yao, WANG Xiang-sheng. Shape selectivity for the disproportionation of methylnaphthalene over zeolite Hβ[J]. Chin J Catal,1997,18(3):48−51.
    [16] 董伟峰, 赵忠奎, 乔卫红, 王桂茹, 李宗石. Hβ沸石催化剂催化α-甲基萘的异构化反应[J]. 石油化工,2004,33(9):820−823. doi: 10.3321/j.issn:1000-8144.2004.09.005

    DONG Wei-feng, ZHAO Zhong-kui, QIAO Wei-hong, WANG Gui-ru, LI Zong-shi. Isomerization of α-methylnaphthalene on Hβ zeolite catalysts[J]. Chin Petrochem Technol,2004,33(9):820−823. doi: 10.3321/j.issn:1000-8144.2004.09.005
    [17] 孙昊. 1-甲基萘定向转化反应的HBEA分子筛可控修饰及机理研究[D]. 南京, 南京师范大学, 2017.

    SUN Hao, Study on the controllable modification and mechanism of HBEA molecular sieve for the directed conversion of 1-Methylnaphthalene[D]. Nanjing: Nanjing Normal University, 2017.
    [18] JIN L J, FANG Y M, HU H Q. Selective synthesis of 2,6-dimethylnaphthalene by methylation of 2-methylnaphtha[J]. Catal Commun,2006,7:255−259. doi: 10.1016/j.catcom.2005.11.012
    [19] ROTH W J, ČEJKI J, MILLINI R, MONTANARI E, GIL B, KUBU M. Swelling and interlayer chemistry of layered MWW zeolites MCM-22 and MCM-56 with high Al content[J]. Chem Mater,2015,27(13):4620−4629. doi: 10.1021/acs.chemmater.5b01030
    [20] OSTROUMOVA V A, MAKSIMOV A L. MWW-Type zeolites: MCM-22, MCM-36, MCM-49, and MCM-56 (A Review)[J]. Pet Chem,2019,59(8):788−801. doi: 10.1134/S0965544119080140
    [21] 李峰, 王红艳, 陈树伟, 李文林, 崔杏雨, 李瑞丰. 不同结构Zr-Beta分子筛制备及MPV反应性能研究[J]. 应用化工,2020,49(4):867−871. doi: 10.3969/j.issn.1671-3206.2020.04.017

    LI Feng, WANG Hong-yan, CHEN Shu-wei. Preparation of Zr-Beta molecular sieves with different structures and research on MPV reaction performance[J]. App Chem Ind,2020,49(4):867−871. doi: 10.3969/j.issn.1671-3206.2020.04.017
    [22] 韩琪, 李海岩, 杨英, 刘百军. 超稳Y型分子筛的骨架硅铝比对甘油气相脱水反应的影响[J]. 化工进展,2019,38(6):2791−2795.

    HAN Qi, LI Hai-yan, YANG Ying, LIU Bai-jun. Influence of the SiO2/Al2O3 ratio on the performance of USY zeolites for the gas-phase dehydration of glycerol to acrolein[J]. Chem Ind Eng Prog (China),2019,38(6):2791−2795.
    [23] FENG R, YAN X, HU X, YAN Z, LIN J, LI Z, HOU K, ROOD M J. Surface dealumination of micro-sized ZSM-5 for improving propylene selectivity and catalyst lifetime in methanol to propylene (MTP) reaction[J]. Catal Commun,2018,109:1−5. doi: 10.1016/j.catcom.2018.02.005
    [24] 张钰, 吴淑杰, 杨胥微, 贾明君, 王丽霞, 张祚望, 吴通好, 孙家锺. 脱铝MCM-49分子筛的结构、酸性及苯与丙烯液相烷基化催化性能研究[J]. 高等学校化学学报,2007,28(7):1319−1324. doi: 10.3321/j.issn:0251-0790.2007.07.021

    ZHANG Yu, WU Shu-jie, YANG Xu-wei, JIA Ming-jun, WANG Li-xia, ZHANG Zuo-wang, WU Tong-hao, SUN Jia-zhong. Structure, acid properties and catalysis performance of dealuminated MCM-49 zeolites for the alkylation of benzene with propylene[J]. Chem J Chin Univ,2007,28(7):1319−1324. doi: 10.3321/j.issn:0251-0790.2007.07.021
    [25] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141:347−354. doi: 10.1006/jcat.1993.1145
    [26] ANUNZIATA O A, PIERELLA L B. Transalkylation of naphthalene with mesitylene over HZSM-11 zeolite[J]. Catal Lett,1997,44(3):259−263.
    [27] MENG F, SHANG Q, HUA D, CHEN L, SUN L, YANG S, XIE X, ZHAO B, ZHANG X. Naphthalene and alkyl naphthalene from catalytic fast pyrolysis of biomass over ZSM-5 aggregates[J]. J Biobased Mater Bioenergy,2020,14:195−202. doi: 10.1166/jbmb.2020.1943
    [28] ALMULLA F M, ALI S A, ALDOSSARY M R, ALNAIMI E I, JUMAH A B, GARFORTH A A. Transalkylation of 1,2,4-trimethylbenzene with toluene over large pore zeolites: Role of pore structure and acidity[J]. Appl Catal A: Gen,2020,608:117886−117897. doi: 10.1016/j.apcata.2020.117886
    [29] COLÓN G, FERINO I, ROMBI E, MAGNOUX P, GUISNET M. Evidence of transalkylation during liquid-phase isopropylation of naphthalene[J]. React Kinet Catal Lett,1998,63(1):3−8. doi: 10.1007/BF02475422
    [30] TAKEUCHI G, SHIMOURA Y, HARA T. Selective transalkylation of naphthalene and ethylnaphthalene over solid acid catalysts[J]. Catal Lett,1996,41:195−197. doi: 10.1007/BF00811490
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  168
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 修回日期:  2021-01-24
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回