留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni/N-rGO催化剂的表征及加氢性能研究

徐海升 黄国强 薛媚月 郜鹏程

徐海升, 黄国强, 薛媚月, 郜鹏程. Ni/N-rGO催化剂的表征及加氢性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60038-5
引用本文: 徐海升, 黄国强, 薛媚月, 郜鹏程. Ni/N-rGO催化剂的表征及加氢性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60038-5
XU Hai-sheng, HUANG Guo-qiang, XUE Mei-yue, GAO Peng-cheng. Characterization of Ni/N-rGO catalyst and study on the hydrogenation performance of phenol[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60038-5
Citation: XU Hai-sheng, HUANG Guo-qiang, XUE Mei-yue, GAO Peng-cheng. Characterization of Ni/N-rGO catalyst and study on the hydrogenation performance of phenol[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60038-5

Ni/N-rGO催化剂的表征及加氢性能研究

doi: 10.1016/S1872-5813(21)60038-5
基金项目: 西安石油大学研究生创新与实践能力培养立项项目(YCS20221009,YCS20212102)资助
详细信息
    通讯作者:

    E-mail: xhs74@xsyu.edu.cn

  • 中图分类号: TQ 426.94

Characterization of Ni/N-rGO catalyst and study on the hydrogenation performance of phenol

Funds: University graduate innovation and practical ability training project of Xi’an Shiyou University(YCS20221009,YCS20212102)
  • 摘要: 以325目鳞片石墨为原料,采用改进Hummers法合成氧化石墨(GO),再以尿素为氮源,通过水热法制备了氮掺杂还原氧化石墨烯(N-rGO)载体,然后通过浸渍法制备出负载型Ni/N-rGO催化剂。通过N2吸附-脱附、XRD、SEM、H2-TPR等测试方法对所制备的催化剂进行表征分析。以苯酚选择性加氢制备环己酮为反应体系,在反应温度150 ℃、压力0.4 MPa、时间2.0 h的条件下,对比了N-rGO、还原氧化石墨烯(rGO)、活性炭(AC)等载体负载Ni催化剂的加氢性能。结果表明,N-rGO载体不但具有较大的比表面积和适宜的孔结构,而且N-rGO和金属镍之间有较好的协同作用,Ni/N-rGO催化剂展现出优异的催化活性和选择性。
  • 图  1  GO、rGO、N(X)-rGO的FT-IR谱图

    Figure  1.  FT-IR spectra of GO, rGO and N(X)-rGO

    a. GO; b. rGO; c. N(10)-rGO; d. N(20)-rGO; e. N(30)-rGO; f. N(40)-rGO; g. N(50)-rGO

    图  2  N-rGO和Ni/N-rGO的N2吸附-脱附等温线及孔径分布曲线

    Figure  2.  N2 adsorption-desorption isotherm and pore size distribution of N-rGO and Ni/N-rGO

    图  3  系列镍基催化剂的XRD谱图

    Figure  3.  XRD patterns of series nickel -based catalysts

    图  4  GO、rGO、N-rGO、Ni/GO、Ni/rGO、Ni/N-rGO的SEM图

    Figure  4.  The SEM diagram of GO, rGO, N-rGO, Ni/GO, Ni/rGONi/N-rGO

    a. GO;b. rGO;c.N-rGO;d. 20wt.%Ni/GO;e. 20wt.%Ni/rGO;f. 20wt.%Ni/ N-rGO

    图  5  系列镍基催化剂的H2-TPR谱图

    Figure  5.  H2-TPR patterns of series nickel-based catalysts

    a. 20wt.%Ni/rGO; b. 10wt.%Ni/N-rGO; c. 20wt.%Ni/N-rGO; d. 30wt.%Ni/N-rGO

    图  6  Ni/N-rGO催化苯酚加氢的可能机理图

    Figure  6.  Ni/N-rGO the possible mechanism of catalytic phenol hydrogenation

    表  1  各催化剂的物理结构性质

    Table  1.   Physical structural properties of each catalyst

    samplespecific surface area/m2·g ˒1average pore size/nmpore volume/ cm3·g −1
    GO702.00.03
    N-rGO3524.80.42
    rGO3154.50.40
    AC4831.90.33
    Ni/N-rGO2735.40.37
    Ni/rGO2155.10.35
    Ni/AC3482.10.27
    下载: 导出CSV

    表  2  不同镍基催化剂的活性和选择性

    Table  2.   Activity and selectivity of different nickel-based catalysts

    samplePhenol conversion rate,%Cyclohexanone selectivity,%
    rGO48.130.6
    N(30)-rGO59.739.9
    10wt.%Ni/N(30)-rGO81.247.3
    20wt.%Ni/N(30)-rGO91.961.8
    30wt.%Ni/N(30)-rGO86.255.2
    20wt.%Ni/rGO82.745.4
    20wt.%Ni/AC67.232.6
    下载: 导出CSV
  • [1] KONG X Q, GONG Y T, MAO S J, WANG Y. Selective hydrogenation of phenol[J]. ChemNanoMat,2018,4:1−20. doi: 10.1002/cnma.201700346
    [2] ALIAHMADI M, DAVOUDI M, KHARAT A N. Selective hydrogenation of phenol to cyclohexanone catalyzed by palladium nanoparticles supported on alumina/lanthanide oxides[J]. React Kinet Mech Cat,2020,11:1−10.
    [3] 温昕, 董洁, 舍添添, 白国义. 苯酚加氢研究进展[J]. 河北大学学报(自然科学版),2018,38(3):239−247.

    WEN Xin, DONG Jie, SHE Tian-tian, BAI Guo-yi. Progress in phenol hydrogenation[J]. J Hebei Univ (Nat Sci Ed),2018,38(3):239−247.
    [4] CHEN Y Z, KONG X Q, MAO S J, WANG Z, GONG Y T, WANG Y. Study of the role of alkaline sodium additive in selective hydrogenation of phenol[J]. Chin J Catal,2019,40(10):1516−1524. doi: 10.1016/S1872-2067(19)63386-3
    [5] RAUT A N, NANDANWAR S U, SURYAWANSHI Y R, CHAKRABORTY M, JAUHARI S, MUKHOPADHYAY S, SHENOY K T, BAJAJ H C. Liquid phase selective hydrogenation of phenol to cyclohexanone over Ru/Al2O3 nanocatalyst under mild conditions[J]. Kinet Catal,2016,57(1):39−46. doi: 10.1134/S0023158416010110
    [6] TELES C A, RABELO-NETO R C, LIMA J R D, MATTOS L V, RESASCO D E, F B. The effect of metal type on hydrodeoxygenation of phenol over silica supported catalysts[J]. Catal Lett,2016,146(10):1−10.
    [7] 徐海升, 黄国强, 何丽娟. 酚类化合物加氢脱氧催化剂的研究进展[J]. 现代化工,2020,40(10):66−70.

    XU Hai-sheng, HUANG Guo-qiang, HE Li-juan. Advances in research of catalysts for hydrodeoxygenation of phenolic compounds[J]. Mod Chem Ind,2020,40(10):66−70.
    [8] 彭鹏, 刘洪涛, 武斌, 汤庆鑫, 刘云圻. 氮掺杂石墨烯的p型场效应及其精细调控(英文)[J]. 物理化学学报,2019,35(11):1282−1290. doi: 10.3866/PKU.WHXB201903002

    PENG Peng, LIU Hong-tao, WU Bin, TANG Qing-xin, LIU Yun-qi. Nitrogen doped graphene with a p-type field-effect and its fine modulation[J]. Acta Phys-chim Sin,2019,35(11):1282−1290. doi: 10.3866/PKU.WHXB201903002
    [9] 徐海升, 王 豪, 何丽娟. Ni2P/rGO-Al2O3催化剂的表征及加氢脱氧性能[J]. 石油学报(石油加工),2019,35(1):35−39.

    XU Hai-sheng, WANG Hao, HE Li-juan. Characterization of Ni2P/rGO-Al2O3 catalyst and its catalytic performance in hydrodeoxygenation[J]. Acta Pet Sin (Pet Processing Sect),2019,35(1):35−39.
    [10] EMTSEV K V, BOSTWICK A, HORN K, JOBST J, KELLOGG G L, LEY L, MCCHESNEY J L, OHTA T, RESHANOV S A. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nat Mater,2009,8(3):203−207. doi: 10.1038/nmat2382
    [11] WANG Y, RONG X M, WANG T, WU S, QU J. Inflfluence of graphene surface chemistry on Ir-catalyzed hydrogenation of p-chloronitrobenzene and cinnamaldehyde: Weak molecule-support interactions[J]. J Catal,2019,377:524−533. doi: 10.1016/j.jcat.2019.07.061
    [12] 潘若飞. 石墨烯基催化剂在芳环选择性加氢中的应用研究[D]. 杭州: 浙江大学, 2016.

    PAN Ruo-fei. Application of graphene-based catalysts in selective hydrogenation of aromatic compounds[D]. Hangzhou: Zhejiang University, 2016.
    [13] 李孟辉, 袁鸣蔚, 黄佳, 吴鸿杰, 李进军, 游志雄. 石墨烯及其衍生物在催化领域的应用[J]. 分子催化,2019,33(2):190−200.

    LI Meng-hui, YUAN Ming-wei, HUANG Jia, WU Hong-jie, LI Jin-jun, YOU Zhi-xiong. Application of graphene and its derivatives in catalysis[J]. J Mol Catal,2019,33(2):190−200.
    [14] ZHANG C H, YANG S Z, WU J J, LIU M J. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene[J]. Adv Energy Mater,2018,8(19):1703487−1903496. doi: 10.1002/aenm.201703487
    [15] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. J Am Chem Soc,1958,80(6):1339. doi: 10.1021/ja01539a017
    [16] 苏鹏, 郭慧林, 彭三, 宁生科. 氮掺杂石墨烯的制备及其超级电容性能[J]. 物理化学学报,2012,28(11):2745−2753. doi: 10.3866/PKU.WHXB201208221

    SU Peng, GUO Hui-lin, PENG San, NING Sheng-ke. Preparation of nitrogen-doped graphene and its supercapacitive properties[J]. Acta Phys-Chim Sin,2012,28(11):2745−2753. doi: 10.3866/PKU.WHXB201208221
    [17] 胡克文, 李贺军, 齐乐华, 罗俊, 连洪程. 氮掺杂石墨烯墨水的制备及理化特性(英文)[J]. 新型炭材料,2020,35(4):444−451. doi: 10.1016/S1872-5805(20)60502-9

    HU Ke-wen, LI He-jun, QI Le-hua, LUO Jun, LIAN Hong-hua. Preparation and physicochemical properties of nitrogen-doped graphene inks[J]. New Carbon Mater,2020,35(4):444−451. doi: 10.1016/S1872-5805(20)60502-9
    [18] YANG J, WU M, CHEN F, FEI Z D, ZHONG M Q. Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites[J]. J Supercrit Fluid,2011,56(2):201−207. doi: 10.1016/j.supflu.2010.12.014
    [19] GAIDUKEVIC J, BARKAUSKAS J, MALAIKA A, PAULINA R G, ALEKSANDRA M, VITALIJA J. Modified graphene-based materials as effective catalysts for transesterification of rapeseed oil to biodiesel fuel[J]. Chin J Catal,2018,39(10):1633−1645. doi: 10.1016/S1872-2067(18)63087-6
    [20] LE M C, VAN K L, NGUYEN T H T, HA N N. The impact of Ce-Zr addition on nickel dispersion and catalytic behavior for CO2 methanation of Ni/AC catalyst at low temperature[J]. J Chem,2017,2017:1−11.
    [21] MICHAL K, MIETEK J. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chem Mater,2001,13:3169−3183. doi: 10.1021/cm0101069
    [22] 张荣斌, 仝塞, 杨金美, 唐纤秾, 黄传庆, 王学文, 冯 刚, 蔡建信. 石墨烯负载镍催化CO2加氢甲烷化[J]. 高等学校化学学报,2017,38(12):2255−2261. doi: 10.7503/cjcu20170348

    ZHANG Rong-bin, TONG Sai, YANG Jin-mei, TANG Xian-nong, HUANG Chuan-qing, WANG Xue-wen, FENG Gang, CAI Jian-xin. Graphene supported nickel catalyst for methanation of carbon dioxide[J]. Chem J Chin Univ,2017,38(12):2255−2261. doi: 10.7503/cjcu20170348
    [23] RIDZUAN N D M, SHAHARUN M S, LEE K M, DIN I U, PUSPITASARI P. Inflfluence of nickel loading on reduced graphene oxide-based nickel catalysts for thehydrogenation of carbon dioxide to methane[J]. Catalysts,2020,10(5):471−486. doi: 10.3390/catal10050471
    [24] 徐海升, 何丽娟, 黄国强. Ni2P/Fe-HAP催化剂的表征及其苯酚加氢表面作用机理[J]. 精细化工,2020,37(6):1227−1232.

    XU Hai-sheng, HE Li-juan, HUANG Guo-qiang. Characterization of Ni2P/Fe-HAP catalyst and its surface interaction mechanism of phenol hydrogenation[J]. Fine Chem,2020,37(6):1227−1232.
    [25] CHEN J Z, ZHANG W, CHEN L M, MA L L. Direct selective hydrogenation of phenol and derivatives over polyaniline-functionalized carbon-nanotube-supported palladium[J]. Chem Plus Chem,2013,78(2):142−148. doi: 10.1002/cplu.201200276
    [26] WANG Y, YAO J, LI H, SU D S, ANTONIETTI M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media[J]. J Am Chem Soc,2011,133(8):2362−2365. doi: 10.1021/ja109856y
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回