留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaO基吸附剂捕集CO2及其抗烧结改性研究进展

耿一琪 郭彦霞 樊飙 程芳琴 成怀刚

耿一琪, 郭彦霞, 樊飙, 程芳琴, 成怀刚. CaO基吸附剂捕集CO2及其抗烧结改性研究进展[J]. 燃料化学学报(中英文), 2021, 49(7): 998-1013. doi: 10.1016/S1872-5813(21)60040-3
引用本文: 耿一琪, 郭彦霞, 樊飙, 程芳琴, 成怀刚. CaO基吸附剂捕集CO2及其抗烧结改性研究进展[J]. 燃料化学学报(中英文), 2021, 49(7): 998-1013. doi: 10.1016/S1872-5813(21)60040-3
GENG Yi-qi, GUO Yan-xia, FAN Biao, CHENG Fang-qin, CHENG Huai-gang. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 998-1013. doi: 10.1016/S1872-5813(21)60040-3
Citation: GENG Yi-qi, GUO Yan-xia, FAN Biao, CHENG Fang-qin, CHENG Huai-gang. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 998-1013. doi: 10.1016/S1872-5813(21)60040-3

CaO基吸附剂捕集CO2及其抗烧结改性研究进展

doi: 10.1016/S1872-5813(21)60040-3
基金项目: 国家自然科学基金(51674162)和山西省高等学校中青年拔尖创新人才资助计划资助
详细信息
    通讯作者:

    E-mail: guoyx@sxu.edu.cn

  • 中图分类号: X511

Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification

Funds: The project was supported by the National Natural Science Foundation of China (51674162) and Young and Middle-aged Top Innovative Talent Funding Program in Universities of Shanxi Province
  • 摘要: 利用CaO基吸附剂直接从高温烟气中捕集CO2因成本低、吸附性能好等优点成为CCUS(碳捕集、利用与封存)的重要技术之一。但CaO基吸附剂在碳酸化/煅烧吸脱附循环过程中存在易烧结的问题,导致其吸附性能急剧下降。本研究针对CaO基吸附剂全面总结了其吸附CO2的动力学、热力学及烧结机理,并重点综述了世界各国研究者在CaO基吸附剂抗烧结改性方面所做的研究,指出了各种方法的优点及其局限性。结果表明,水合作用改性可使吸附剂崩塌而获得更大的比表面积;酸溶液改性会在制备过程产生更多的气体和小分子物质提高吸附剂孔隙率;掺杂改性可以促进CaO对CO2的吸附和扩散,还可作为骨架分离CaO颗粒。经比较,掺杂改性工艺简单、性能好,是比较有前景的改性方法,以含钙固废制备抗烧结改性吸附剂是发展方向。
  • FIG. 806.  FIG. 806.

    FIG. 806.  FIG. 806.

    图  1  CaO吸附CO2的碳酸化反应过程机理[16]

    Figure  1  Mechanism of carbonation reaction process of CaO with CO2[16]

    图  2  CO2在CaO表面上的四种吸附模型[28]

    Figure  2  Four adsorption models of CO2 on CaO surface[28]

    (a): O-top site; (b): quadruple Cave site; (c): doppelganger site; (d): Ca-top site

    图  3  CaO循环捕集CO2示意图[30]

    Figure  3  Schematic diagram of CaO recycling for CO2 capture[30]

    图  4  CaO烧结失活机理[44]

    Figure  4  CaO sintering deactivation mechanism[44]

    图  5  不同影响因素下CaO基吸附剂的烧结失活情况[30, 47, 49]

    Figure  5  Sintering deactivation of CaO-based adsorbent under different influence factors[30, 47, 49]

    (a): Effect of particle size; (b): Effect of calcination temperature; (c): Effect of calcination time; (d): Effect of different precursors

    图  6  水蒸气、醇溶液改性CaO基吸附剂的碳酸化转化率对比[52, 55]

    Figure  6  Comparison of the carbonation conversion of water vapor and alcohol solution modified CaO-based adsorbent[52, 55]

    图  7  掺杂钾、钠盐改性CaO基吸附剂的碳酸化转化率对比[62]

    Figure  7  Comparison of the carbonation conversion of modified CaO-based adsorbents doped with potassium and sodium salts[62]

    图  8  掺杂Na2CO3的吸附剂吸附CO2机理[63]

    Figure  8  Mechanism of CO2 adsorption by Na2CO3 doped adsorbent[63]

    图  9  掺杂惰性组分抗烧结示意图[76]

    Figure  9  Schematic diagram of anti-sintering by doping with inert components[76]

    表  1  碳酸化反应的动力学模型

    Table  1  Kinetic models of the carbonation reaction

    ModelsOverviewCarbonation reaction rateRef
    Random Pore ModelThinking of the pore structure as a network
    of randomly connected pores
    $\dfrac{ {\rm{d} }X}{ {\rm{d} }t}=\dfrac{ {k}_{{\rm{s}}}{C}^{n}{S}_{0} }{\left(1-\epsilon_{0}\right)}{\left(1-X\right)}^{m}$
    Where X is the conversion of CaO;
    S is reaction surface area; $ \epsilon_{0} $ is porosity;
    m is grain shape factor
    [20]
    Shrinking Core ModelAssuming that the adsorbent particles are spherical, the gas-solid reaction gradually advances from the outside to the inside,
    the unreacted core gradually shrinks,
    and the product layer is located outside
    the reaction layer
    $ \dfrac{{\rm{d}}X}{{\rm{d}}t}=k{\left(1-\dfrac{X}{{X}_{u}}\right)}^{2} $
    Where X is the conversion of CaO; Xu is the ultimate conversion of CaO; k is the parameter in the proposed model.
    [21]
    Grain ModelAssuming that the adsorbent particles are spherical, the center of the crystal grains is randomly located inside the particles,
    and CaCO3 is formed in the outer layer of
    each crystal grain. The radius of the crystal
    grains increases after concentric volume
    expansion, and the radius of the unreacted
    CaO core decreases
    $\dfrac{{{\partial _{{r_c}}}}}{{{\partial _t}}} = \dfrac{{ - {V_{{\rm{CaO}}}}{D_{\rm{s}}}\left( {C - {C^*}} \right)}}{{{r_{\rm{c}}}\left( {1 - {r_{\rm{c}}}/{r_{\rm{g}}}} \right) + \left( {{D_{\rm{s}}}/k} \right)}}$
    Where rc is radius of the unreacted core within
    a grain;rg is the radius of a grain;Ds is the diffusivity of CO2 in the solid product;
    VCaO is the molar volume of CaO;k is intrinsic rate constant;C is the concentration of CO2
    $ {C}^{*} $ is equilibrium CO2 concentration
    [22]
    Rate Equation TheoryThe rate equation includes surface reaction, surface diffusion, and the diffusion of grain boundaries and lattices. The gas-solid reaction takes place in four steps: (1) surface reaction
    and the formation of solid product molecules, (2) single-molecule surface diffusion,
    (3) capturing a single molecule, (4) single molecule escaping
    [23]
    下载: 导出CSV

    表  2  掺杂各氧化物的改性吸附剂捕集CO2的性能

    Table  2  CO2 capture performance of modified adsorbents doped with various oxides

    Calcium precursorDopantPreparation
    method
    Carbonation/calcination temperature and timeCO2 capture performanceRef
    D-calcium gluconateD-magnesium gluconateWet mixing650 ℃, 30 min/
    900 ℃, 10 min
    According to the different doping ratio, the capturing capacity during the cycle is stable at 0.4−0.65 g/g[70]
    CaCO3La2O3Dry physical mixing650 ℃, 15 min/
    850 ℃, 10 min
    Carbonation conversion rate: 1%−21% (20 cycles)[71]
    Wet mixingCarbonation conversion rate:
    42% (20 cycles)
    LimestoneTiO2Sol-gel method650 ℃, 30 min/
    850 ℃, 2 min
    Carbonation conversion rate: 5%−72% (20 cycles)[72]
    Dry Physical mixing0.47−0.19 g/g (25 cycles)
    Wet mixing0.47−0.23 g/g (25 cycles)
    Hydration Mix0.47−0.32 g/g (25 cycles)
    Calcium acetateSodium silicate→Ca2SiO4Wet mixing700 ℃, 20 min/
    850 ℃, 5 min
    With the different doping ratios, the capturing capacity is basically stable at 0.52− 0.33 g/g,
    and the drop rate is slightly different
    [73]
    Calcium chloride dihydrateAluminum isopropoxide→Ca12Al14O33Hard templatemethod650 ℃, 30 min/
    900 ℃, 10 min
    The capturing capacity of the modified adsorbent with an optimized doping ratio is stable at about 0.63 g/g within 30 cycles[66]
    Calcium nitrate tetrahydrateAluminum nitrate nonahydrate→Ca3Al2O6Sol-gel method500 ℃, 30 min/
    800 ℃, 10 min
    The carbonation conversion rate
    of the modified adsorbent with an
    optimized doping ratio
    decreased from 51% to
    48% within 100 cycles
    [68]
    Hydrated calcium nitrateAluminum nitrate nonahydrate→Ca9Al6O18/
    Ca12Al14O33/Al2O3
    Sol-gel method650 ℃, 5 min/
    900 ℃, 5 min
    The carbonation conversion rate
    of the modified adsorbent
    prepared under optimized
    conditions decreased from 72% to
    69% in 21 cycles
    [65]
    下载: 导出CSV

    表  3  固废基抗烧结CaO吸附剂捕集CO2的性能

    Table  3  CO2 capture performance of solid-waste-derived anti-sintering CaO adsorbents

    Calcium sourceSource of dopantPreparation methodCarbonation/calcination
    temperature and time
    CyclesCO2 capture performance
    before and after cycle
    Ref
    Calcium
    carbide slag
    Calcium
    carbide slag
    Bubbling synthesis750 ℃, 60 min/900 ℃, 90 min150.62−0.54 g/g[82]
    Steel slagSteel slagStructure-reforming700 ℃, 25 min/900 ℃, 5 min300.50−0.33 g/g[83]
    Egg shellRed mudDry mixing750 ℃, 10 min/750 ℃, 10 min
    (Different atmosphere)
    10066.96%−46.67%[84]
    Calcium carbonateFly ashWet mixing750 ℃, 20 min/850 ℃, 10 min180.55−0.37 g/g[85]
    Calcium carbonateFly ashSol-gel method600 ℃, 30 min/900 ℃, 30 min200.33−0.22 g/g[87]
    Calcium hydroxideFly ashDry mixing750 ℃, 25 min/920 ℃, 5 min300.36−0.26 g/g[88]
    Calcium carbonate0.45−0.23 g/g
    Calcium acetate0.49−0.25 g/g
    Calcium oxalate0.30− 0.38 g/g
    下载: 导出CSV
  • [1] WANG J, YANG Y, JIA Q, SHI Y, GUAN Q, TANG N, NING P, WANG Q. Solid-waste-derived carbon dioxide-capturing materials[J]. ChemSusChem,2019,12(10):2055−2082. doi: 10.1002/cssc.201802655
    [2] 张含. 大气二氧化碳、全球变暖、海洋酸化与海洋碳循环相互作用的模拟研究[D]. 杭州: 浙江大学, 2018.

    ZHANG Han. A modeling study of interactive feedbacks between carbon dioxide, global warming, ocean acidification, and the ocean carbon cycle[D]. Hangzhou: Zhejiang University, 2018.
    [3] HARVERY C. CO2 levels just hit another record—Here’s why it matters[N]. E&E News, 2019.
    [4] ANDREW W, MELVIN G R, CANNELL D. CO2 stabilization, climate change and the terrestrial carbon sink[J]. Glob Change Biol,2000,6(1):817−833.
    [5] 何小钢, 张耀辉. 行业特征、环境规制与工业CO2排放——基于中国工业36个行业的实证考察[J]. 经济管理,2011,33(11):17−25.

    HE Xiao-gang, ZHANG Yao-hui. Industry characteristics, environmental regulations and industrial CO2 emissions——Based on empirical investigations of 36 industries in China[J]. Econ Manage J,2011,33(11):17−25.
    [6] XIA C Y, YE B, JIANG J, SHU Y T. Prospect of near-zero-emission IGCC power plants to decarbonize coal-fired power generation in China: Implications from the GreenGen project[J]. J Clean Prod,2020,271:122615.
    [7] UCHIDA T, GOTO T, YAMADA T, KIGA T, SPERO C. Oxyfuel combustion as CO2 capture technology advancing for practical use Callide oxyfuel project[J]. Energy Procedia,2013,37:1471−1479. doi: 10.1016/j.egypro.2013.06.022
    [8] ZHENG C G, LIU Z H, XIANG J, ZHANG L Q, LUO C, ZHAO Y C. Fundamental and technical challenges for a compatible design scheme of oxyfuel combustion technology[J]. Engineering,2015,1(1):139−149. doi: 10.15302/J-ENG-2015008
    [9] 王珂. 高温固体吸附剂循环捕获燃煤烟气 CO2的实验与动力学研究[D]. 湖北: 华中科技大学, 2011.

    WANG Ke. Experimental and dynamical study of cyclic CO2 capture from coal combustion flue gases at high temperature using solid sorbents[D]. Hubei: Huazhong University of Science and Technology, 2011.
    [10] SHIMIZU T, HIRAMA T, HOSODA H, KITANO K, INAGAKI M, TEJIMA K. A twin fluid-red reactor for removal of CO2 from combustion processes[J]. Chem Eng Res Des,1999,77(1):62−68. doi: 10.1205/026387699525882
    [11] MACKENZIE A, GRANATSTEIN D L, ANTHONY E J, ABANADES J C. Economics of CO2 capture using the calcium cycle with a pressurized fluidized bed combustor[J]. Energy Fuels,2007,21(2):920−926. doi: 10.1021/ef0603378
    [12] SUO X L, SONG Y, SHENG J G. Experimental study on gasification of bituminutesous coal char with CO2 catalysed by CaO[C]. IOP Conference Series: Earth and Environmental Science, 2019, 354: 012036.
    [13] ABREU M, TEIXEIRA P, FILIPE R M, DOMINGUES L, PINHEIRO, MATOS A H. Modeling the deactivation of CaO-based sorbents during multiple Ca-looping cycles for CO2 post-combustion capture[J]. Comput Chem Eng,2020,134:1−16.
    [14] DI G A, GALLUCCI K, GIANCATERINO F, COURSON C, FOSCOLO P I. Multicycle sorption enhanced steam methane reforming with different sorbent regeneration conditions: Experimental and modelling study[J]. Chem Eng J,2019,377:1−19.
    [15] CAZORLA D, JOLY JP, LINARES S A, MARCILLA G C. Carbon dioxide-calcium oxide surface and bulk reactions: thermodynamic and kinetic approach[J]. J Phys Chem,1991,95:6611−6617. doi: 10.1021/j100170a043
    [16] BARKER R. The reversibility of the reaction $ {\rm{CaC}}{{\rm{O}}_{\rm{3}}}\rightleftarrows{\rm{CaO + C}}{{\rm{O}}_{\rm{2}}} $[J]. J Appl Chem Biotechnol,1973,23(1):733−742.
    [17] GRASA G, MURILLO R, ALONSOl M, ABANADES J C. Application of the random pore model to the carbonation cyclic reaction[J]. AIChE J,2009,55(5):1246−1255. doi: 10.1002/aic.11746
    [18] WU S F, LAN P Q. A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst[J]. AIChE J,2012,58(5):1570−1577. doi: 10.1002/aic.12675
    [19] ZHOU Z, XU P, XIE M M, CHENG Z M, YUAN W K. Modeling of the carbonation kinetics of a synthetic CaO-based sorbent[J]. Chem Eng Sci,2013,95:283−290. doi: 10.1016/j.ces.2013.03.047
    [20] BHATIA S K, PERLMUTTER D D. A random pore model for fluid-solid reactions I. Isothermal, kinetic control[J]. AIChE J,1980,26(3):379−386. doi: 10.1002/aic.690260308
    [21] LEE D. An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide[J]. Chem Eng J,2004,100(1/3):71−77. doi: 10.1016/j.cej.2003.12.003
    [22] LIU W, DENNIS J S, SULTAN D S, REDFERN S, SCOTT S A. An investigation of the kinetics of CO2 uptake by a synthetic calcium based sorbent[J]. Chem Eng Sci,2012,69(1):644−658. doi: 10.1016/j.ces.2011.11.036
    [23] LI Z, SUN H, CAI N. Rate equation theory for the carbonation reaction of CaO with CO2[J]. Energy Fuels,2012,26(7):4607−4616. doi: 10.1021/ef300607z
    [24] SOLIS B H, CUI Y, WENH X, SEIFERT J, SCHAUERMANN S, SAUER J, SHAIKHUTDINOV S, FREUND H J. Initial stages of CO2 adsorption on CaO: A combined experimental and computational study[J]. Phys Chem Chem Phys,2017,19(6):4231−4242. doi: 10.1039/C6CP08504K
    [25] BESSON R, ROCHA V M, FAVERGEON L. CO2 adsorption on calcium oxide: An atomic-scale simulation study[J]. Surf Sci,2012,606(3-4):490−495. doi: 10.1016/j.susc.2011.11.016
    [26] CHEN H, ZHANG YF, LI Y, QI J Y, LIU R. A DFT study on the adsorption of CO2 molecules on CaO(001) surface at different coverages[J]. Chin J Struct Chem,2019,38(1):17−24.
    [27] 张莹. 二氧化碳分子在CaO表面吸附机理的理论研究[D]. 福州: 福州大学, 2013.

    ZHANG Ying. Theoretical studies on the adsorption mechanisms of CO2 molecules on the CaO surfaces[D]. Fuzhou: Fuzhou University, 2013.
    [28] 刘亮, 洪迪昆, 冯于川, 郭欣. CaO 基 CO2 吸附剂掺杂/负载活性组分的第一性原理[J]. 燃烧科学与技术,2017,23(5):412−417.

    LIU Liang, HONG Di-kun, FENG Yu-chuan, GUO Xin. Promoted CaO-based CO2 sorbents by first-principles calculations[J]. J Combust Sci Technol,2017,23(5):412−417.
    [29] 李晓东, 刘成龙, 王长青, 马海霞. 第一性原理分析CO2 在 CaO(100) 表面的吸附性能[J]. 原子与分子物理学报,2016,33(5):893−900.

    LI Xiao-dong, LIU Cheng-long, WANG Chang-qing, MA Hai-xia. First-principles analyses of the adsorption properties of CO2 molecule on CaO (100) surfaces[J]. J At Mol Phys,2016,33(5):893−900.
    [30] ABANADES J C, ANTHONY E J. CO2 capture capacity of CaO in long series of carbonation calcination cycles[J]. Ind Eng Chem Res,2006,45(26):8846−8851. doi: 10.1021/ie0606946
    [31] ABANADES J C, ANTHONY E J, DENNIS Y L, SALVADOR C, ALVAREZ D. Capture of CO2 from combustion gases in a fluidized bed of CaO[J]. AIChE J,2004,50(7):1614−1622. doi: 10.1002/aic.10132
    [32] ARIAS B, DIRGO M E, ABANADES J C, LORENZO M, DIAZ L, ALVAREZ J. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot[J]. Int J Greenh Gas Control,2013,18:237−245. doi: 10.1016/j.ijggc.2013.07.014
    [33] KREMER J, GALLOY A, STRÖHLE J, EPPLE B. Continuous CO2 capture in a 1-MWth carbonate looping pilot plant[J]. Chem Eng Technol,2013,36(9):1518−1524. doi: 10.1002/ceat.201300084
    [34] HUANG C M, HSU H W, LIU W H, CHENG J Y, CHEN W C, WEN T W, CHEN W. Development of post-combustion CO2 capture with CaO/CaCO3 looping in a bench scale plant[J]. Energy Procedia,2011,4:1268−1275. doi: 10.1016/j.egypro.2011.01.183
    [35] FANG F, LI Z S, CAI N S. Continuous CO2 capture from flue gases using a dual fluidized bed reactor with calcium-based sorbent[J]. Ind Eng Chem Res,2009,48(24):11140−11147. doi: 10.1021/ie901128r
    [36] 李英杰. 基于钙循环的燃煤电站捕集 CO2 系统模拟[J]. 煤炭学报,2011,36(1):118−123.

    LI Ying-jie. System simulation of CO2 capture for coal-fired power plant based on calcium looping cycle[J]. J China Coal Soc,2011,36(1):118−123.
    [37] CHANG M H, CHEN W C, HUANG C M, LIU W H, CHOU Y C, CHANG W C, CHEN W, CHENG J Y, HUANG K E, HSU H W. Design and experimental testing of a 1.9 MWth calcium looping pilot plant[J]. Energy Procedia,2014,63:2100−2108. doi: 10.1016/j.egypro.2014.11.226
    [38] TONG X, LIU W, YANG Y, SUN J, HU Y C, CHEN H Q, LI Q W. A semi-industrial preparation procedure of CaO-based pellets with high CO2 uptake performance[J]. Fuel Process Technol,2019,193:149−158. doi: 10.1016/j.fuproc.2019.05.018
    [39] COPPOLA A, ESPOSITO A, MONTAGNARO F, IULIANO M, SCALA F, SALATINO P. The combined effect of H2O and SO2 on CO2 uptake and sorbent attrition during fluidised bed calcium looping[J]. Proc Combust Inst,2019,37(4):4379−4387. doi: 10.1016/j.proci.2018.08.013
    [40] LUO C, ZHENG Y, GUO J, FENG B. Effect of sulfation on CO2 capture of CaO-based sorbents during calcium looping cycle[J]. Fuel,2014,127:124−130. doi: 10.1016/j.fuel.2013.09.063
    [41] ABANADES J C, ALVAREZ D. Conversion limits in the reaction of CO2 with lime[J]. Energy Fuels,2003,17:308−315. doi: 10.1021/ef020152a
    [42] FUERTES A B, ALVAREZ D, RUBIERA F. Surface area and pore size changes during sintering of calcium oxide particles[J]. Chem Eng Commun,2007,109(1):73−88.
    [43] XU Y Q, LUO C, ZHENG Y, DING H R, WANG Q Y, SHEN Q W, LIA X S, ZHANG L Q. Characteristics and performance of CaO-based high temperature CO2 sorbents derived from a sol-gel process with different supports[J]. RSC Adv,2016,6:79285−79296. doi: 10.1039/C6RA15785H
    [44] ANTON I. LYSIKOV, ALEKSEY N S, ALEKSEY G O. Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles[J]. Ind Eng Chem Res,2007,46:4633−4638. doi: 10.1021/ie0702328
    [45] SUN P, GRACE J R, LIM C J, ANTHONY E J. The effect of CaO sintering on cyclic CO2 capture in energy systems[J]. AIChE J,2007,53(9):2432−2442. doi: 10.1002/aic.11251
    [46] BAZAIKIN Y V, DEREVSCHIKOV V S, MALKOVICH E G. Evolution of sorptive and textural properties of CaO-based sorbents during repetitive sorption/regeneration cycles: Part II. Modeling of sorbent sintering during initial cycles[J]. Chem Eng Sci,2019,199:156−163. doi: 10.1016/j.ces.2018.12.065
    [47] DURÁN-MARTÍN J D, SÁNCHEZ JIMENEZ P E, VALVERDE J M. Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage[J]. J Adv Res,2020,22:67−76. doi: 10.1016/j.jare.2019.10.008
    [48] ZHU Y, WU S, WANG X. Nano CaO grain characteristics and growth model under calcination[J]. Chem Eng J,2011,175:512−518. doi: 10.1016/j.cej.2011.09.084
    [49] LIU W Q, NATHANAEL, W L, BO L, GUO X. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture[J]. Environ Sci Technol,2010,44(2):841−847. doi: 10.1021/es902426n
    [50] MANOVIC V A, EDWARD J. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles[J]. Environ Sci Technol,2008,42(11):4170−4174. doi: 10.1021/es800152s
    [51] LAN P, WU S. Mechanism for self-reactivation of nano-CaO-based CO2 sorbent in calcium looping[J]. Fuel,2015,143:9−15. doi: 10.1016/j.fuel.2014.11.004
    [52] ARIAS B, GRASA G S, ABANADES J C. Effect of sorbent hydration on the average activity of CaO in a Ca-looping system[J]. Chem Eng J,2010,163(3):324−330. doi: 10.1016/j.cej.2010.08.009
    [53] 陈惠超, 赵长遂, 沈鹏. 烟气中水蒸气对钙基吸收剂碳酸化的影响特性[J]. 化工学报,2013,64(4):1365−1372.

    CHEN Hui-chao, ZHAO Chang-sui, SHEN Peng. Effect of steam in flue gas on CO2 capture for calcium based sorbent[J]. CIESC J,2013,64(4):1365−1372.
    [54] WANG Y, LIN S, SUZUKI Y. Experimental study on CO2 capture conditions of a fluidized bed limestone decomposition reactor[J]. Fuel Process Technol,2010,91:958−963. doi: 10.1016/j.fuproc.2009.07.011
    [55] LI Y J, ZHAO C S, QU C R, DUAN L B, LI Q Z, LIANG C. CO2 capture using CaO modified with ethanol/water solution during cyclic calcination/carbonation[J]. Chem Eng Technol,2008,31(2):237−244. doi: 10.1002/ceat.200700371
    [56] LI Y J, ZHAO C S, CHEN H, LIU Y. Enhancement of Ca-based sorbent multicyclic behavior in Ca looping process for CO2 separation[J]. Chem Eng Technol,2009,32(4):548−555. doi: 10.1002/ceat.200800525
    [57] HU Y C, LIU W Q, SUN J, LI M K, YANG X W, ZHANG Y, LIU X W, XU M H. Structurally improved CaO-based sorbent by organic acids for high temperature CO2 capture[J]. Fuel,2016,167:17−24. doi: 10.1016/j.fuel.2015.11.048
    [58] SUN R, LIY, WU S, LIU C T, LIU H G, LIU C M. Enhancement of CO2 capture capacity by modifying limestone with propionic acid[J]. Powder Technol,2013,233:8−14. doi: 10.1016/j.powtec.2012.08.011
    [59] 张雷, 张力, 闫云飞, 杨仲卿, 郭名女. 掺杂 Ce、Zr 对 CO2钙基吸附剂循环特性的影响[J]. 化工学报,2015,66(2):612−617.

    ZHANG Lei, ZHANG Li, YAN Yun-fei, YANG Zhong-qing, GUO Ming-nü. Effect of Ce, Zr on cyclic performance of CaO-based CO2 sorbents[J]. CIESC J,2015,66(2):612−617.
    [60] YI K B, KO C H, PARK J H, KIM J N. Improvement of the cyclic stability of high temperature CO2 absorbent by the addition of oxygen vacancy possessing material[J]. Catal Today,2009,146(1/2):241−247. doi: 10.1016/j.cattod.2008.12.009
    [61] YOON H J, LEE K B. Introduction of chemically bonded zirconium oxide in CaO-based high-temperature CO2 sorbents for enhanced cyclic sorption[J]. Chem Eng J,2019,355:850−857. doi: 10.1016/j.cej.2018.08.148
    [62] 李英杰, 赵长遂, 段伦博, 李庆钊, 梁财. 钾钠盐类对钙基 CO2吸附剂循环碳酸化的影响[J]. 中国电机工程学报,2009,29(2):52−57. doi: 10.3321/j.issn:0258-8013.2009.02.010

    LI Ying-jie, ZHAO Chang-sui, DUAN Lun-bo, LI Qing-zhao, LIANG cai. Effect of potassium and sodium salts on cyclic carbonation of calcium-based CO2 sorbent[J]. Proc CSEE,2009,29(2):52−57. doi: 10.3321/j.issn:0258-8013.2009.02.010
    [63] LEE C H, CHOI S W, YOON H J, KWON H J, LEE H C. Na2CO3-doped CaO-based high-temperature CO2 sorbent and its sorption kinetics[J]. Chem Eng J,2018,352(15):103−109.
    [64] XU Y Q, LUO C, ZHENG Y, DING H R, ZHANG L Q. Macropore-stabilized limestone sorbents prepared by the simultaneous hydration-impregnation method for high-temperature CO2 capture[J]. Energy Fuels,2016,30(4):3219−3226. doi: 10.1021/acs.energyfuels.5b02603
    [65] AZIMI B, TAHMASEBPOOR M, SANCHEZ-JIMENEZ P E, PEREJON A, VALVERDE J M. Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents[J]. Chem Eng J,2019,358:679−690. doi: 10.1016/j.cej.2018.10.061
    [66] LIU F Q, LI W H, LIU B C, LI R X. Synthesis, characterization, and high temperature CO2 capture of new CaO based hollow sphere sorbents[J]. J Mater Chem A,2013,1:8037−8044. doi: 10.1039/c3ta11369h
    [67] HAN R, GAO J, WEI S, SUN Y L, QIN Y K. Development of highly effective CaO@Al2O3 with hierarchical architecture CO2 sorbents via a scalable limited-space chemical vapor deposition technique[J]. J Mater Chem A,2018,6(8):3462−3470. doi: 10.1039/C7TA09960F
    [68] JING J Y, LI T Y, ZHANG X W, WANG S D, FENG J, TURMEL W, LI W Y. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism[J]. Appl Energy,2017,199:225−233. doi: 10.1016/j.apenergy.2017.03.131
    [69] ZHOU Z, QI Y, XIE M, CHENG Z M, YUAN W K. Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance[J]. Chem Eng Sci,2012,74:172−180. doi: 10.1016/j.ces.2012.02.042
    [70] LIU W Q, FENG B, Wu Y Q, WANG G X, BARRY J. Synthesis of sintering-resistant sorbents for CO2 capture[J]. Environ Sci Technol,2010,44(8):3093−3097. doi: 10.1021/es903436v
    [71] LUO C, ZHENG Y, DING N, WU Q L, BIAN G, ZHENG C G. Development and performance of CaO/La2O3 sorbents during calcium looping cycles for CO2 capture[J]. Ind Eng Chem Res,2010,49(22):11778−11784. doi: 10.1021/ie1012745
    [72] SUN J, GUOY, YANG Y, LI W L, ZHOU Y, ZHANG J B, LIU W Q, ZHAO C W. Mode investigation of CO2 sorption enhancement for titanium dioxide-decorated CaO-based pellets[J]. Fuel,2019,256:1−9.
    [73] ZHAO M, SONG Y Q, JI G Z, ZHAO X. Demonstration of polymorphic spacing strategy against sintering: Synthesis of stabilized calcium looping absorbents for hightemperature CO2 sorption[J]. Energy Fuels,2018,32:5443−5452. doi: 10.1021/acs.energyfuels.8b00648
    [74] LIU L, HONG D K, GUO X. A study of metals promoted CaO-based CO2 sorbents for high temperature application by combining experimental and DFT calculations[J]. J CO2 Util,2017,22:155−163. doi: 10.1016/j.jcou.2017.09.022
    [75] MA X T, LI Y J, YAN X Y, ZHANG W, ZHAO J L, WANG Z Y. Preparation of a morph-genetic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture[J]. Chem Eng J,2019,361:235−244. doi: 10.1016/j.cej.2018.12.061
    [76] HU Y, LIU W, CHEN H, ZHOU Z J, WANG W Y, SUN J, YANG X W, LI X, XU M H. Screening of inert solid supports for CaO-based sorbents for high temperature CO2 capture[J]. Fuel,2016,181:199−206. doi: 10.1016/j.fuel.2016.04.138
    [77] GIULIANO A D, GALLUCCI K, KAZI S S, GIANCATERINO F, CARLO A D, COURSON C, MEYER J, FELICE L D. Development of Ni- and CaO-based mono- and bi-functional catalyst and sorbent materials for sorption enhanced steam methane reforming: Performance over 200 cycles and attrition tests[J]. Fuel Process Technol,2019,195:1−16.
    [78] SUN H, PARLETT C M A, ISAACS M A, LIU X T, ADWEK G. Development of Ca/KIT-6 adsorbents for high temperature CO2 capture[J]. Fuel,2019,235(1):1070−1076.
    [79] PENG W, XU Z, LUO C, ZHAO H B. Tailor-made core-shell CaO/TiO2-Al2O3 architecture as a high-capacity and long-life CO2 sorbent[J]. Environ Sci Technol,2015,49(13):8237−8245. doi: 10.1021/acs.est.5b01415
    [80] 张明明, 彭云湘, 汪瑾, 李平, 于建国. 三元复合钙基材料CaO-Ca3Al2O6-MgO的合成及其CO2吸附性能[J]. 化工学报,2014,65(1):227−236. doi: 10.3969/j.issn.0438-1157.2014.01.029

    ZHANG Ming-ming, PENG Yun-xiang, WANG Jin, LI Ping, YU Jian-guo. Preparation of ternary composite Ca-based material CaO-Ca3Al2O6-MgO for high-temperature CO2 capture[J]. CIESC J,2014,65(1):227−236. doi: 10.3969/j.issn.0438-1157.2014.01.029
    [81] 罗聪, 郑瑛, 丁宁, 吴琪珑, 郑楚光. 纳米复合钙基高温CO2吸收剂的合成与性能[J]. 中国电机工程学报,2011,31(8):45−50.

    LUO Cong, ZHENG Ying, DING Ning, WU QI-LONG, ZHENG Chu-guang. Synthesis and performance of a nano synthetic ca-based sorbent for high temperature CO2 capture[J]. Proc CSEE,2011,31(8):45−50.
    [82] LIU K, ZHAO B, WU Y, LI F, LI Q, ZHANG J B. Bubbling synthesis and high-temperature CO2 adsorption performance of CaO-based adsorbents from carbide slag[J]. Fuel,2020,269:117481.
    [83] TIAN S, JIANG J, YAN F, LI K, CHEN X. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag[J]. Environ Sci Technol,2015,49(12):7464−7472. doi: 10.1021/acs.est.5b00244
    [84] HE S, HU Y, HU T, MA Q M, SU H Y, SHAN S Y. Investigation of CaO-based sorbents derived from eggshells and red mud for CO2 capture[J]. J Alloy Compd,2017,701:828−833. doi: 10.1016/j.jallcom.2016.12.194
    [85] CHEN H, KHALIL N. Fly-ash-modified calcium-based sorbents tailored to CO2 capture[J]. Ind Eng Chem Res,2017,56(7):1888−1894. doi: 10.1021/acs.iecr.6b04234
    [86] CHEN H, WANG F, ZHAO C, NASSER K. The effect of fly ash on reactivity of calcium based sorbents for CO2 capture[J]. Chem Eng J,2017,309:725−737. doi: 10.1016/j.cej.2016.10.050
    [87] SCACCIA S, VANGA G, GATTIA D M, STENDARDO S. Preparation of CaO-based sorbent from coal fly ash cenospheres for calcium looping process[J]. J Alloy Compd,2019,801:123−129. doi: 10.1016/j.jallcom.2019.06.064
    [88] YAN F, JIANG J, LI K, TIAN S, ZHAO M, CHEN X J. Performance of coal fly ash stabilized, CaO-based sorbents under different carbonation-calcination conditions[J]. ACS Sustainable Chem Eng,2015,3(9):2092−2099. doi: 10.1021/acssuschemeng.5b00355
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1006
  • HTML全文浏览量:  196
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-22
  • 修回日期:  2021-01-19
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回