留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无烟煤微晶结构的高分辨率透射电镜分析

雷蕾 相建华 曾凡桂 邓小鹏

雷蕾, 相建华, 曾凡桂, 邓小鹏. 无烟煤微晶结构的高分辨率透射电镜分析[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60050-6
引用本文: 雷蕾, 相建华, 曾凡桂, 邓小鹏. 无烟煤微晶结构的高分辨率透射电镜分析[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60050-6
LEI Lei, XIANG Jian-hua, ZENG Fan-gui, DENG Xiao-peng. High resolution TEM image analysis of anthracite coal microcrystalline structure[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60050-6
Citation: LEI Lei, XIANG Jian-hua, ZENG Fan-gui, DENG Xiao-peng. High resolution TEM image analysis of anthracite coal microcrystalline structure[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60050-6

无烟煤微晶结构的高分辨率透射电镜分析

doi: 10.1016/S1872-5813(21)60050-6
基金项目: 国家自然科学基金(41572144,U1910204,41973077)和山西省应用基础研究基金(201601D021137)资助
详细信息
    作者简介:

    雷蕾:雷 蕾:1498007688@qq.com

    通讯作者:

    E-mail: xiangjianhua@tyut.edu.cn

  • 中图分类号: TQ533

High resolution TEM image analysis of anthracite coal microcrystalline structure

Funds: The project was supported by National Natural Science Foundation of China (41572144, U1910204, 41973077), Applied Basic Research Fund of ShanXi Province (201601D021137)
More Information
  • 摘要: 对阳泉3号无烟煤的4张HRTEM图像的条纹长度、取向和堆垛分布进行了定量表征,结果表明条纹分布特征均符合无烟煤的煤级特点。对图片1中3个不同微晶结构区域的条纹进行统计,结果表明:1号区域中,晶格条纹较短平均长度为0.87 nm,整体条纹取向分布杂乱,但短条纹之间以及长条纹之间仍各自存在小范围的有序排列,堆垛最大层数仅4层;3号条纹区域中,晶格条纹较长平均为1.01 nm,取向在135~180°范围有较高富集,比例达62.46%,同时堆垛最大层数可达到6层;2号区域条纹分布特征则介于1,3号之间。大部分条纹表现出弯曲的形态,可能其中有杂元环以及脂肪环的存在。FTIR和13C NMR的数据表明,脂肪结构多以脂肪环形式存在,其在短条纹拼接形成长条纹的过程中发挥着重要作用。
  • 图  1  煤样的13C NMR图谱

    Figure  1.  13C NMR spectrum

    图  2  煤样的3000−2800 cm−1红外光谱图

    Figure  2.  3000−2800 cm−1 FTIR spectrum of coal sample

    图  3  原始图像及晶格条纹图像

    Figure  3.  Original and lattice fringe image

    图  4  基于六边形生长的环形连锁方式

    Figure  4.  Circular catenation method based on hexagonal growth

    图  5  条纹长度分布

    Figure  5.  Distribution of fringe length

    图  6  条纹角度分布

    Figure  6.  Distribution of fringe direction

    图  7  条纹堆垛层数分布

    Figure  7.  Distribution of fringe stack layers distribution

    图  8  原图及晶格条纹图像

    Figure  8.  Original and lattice fringe image

    图  9  区域1,2,3的原始HRTEM图像及晶格条纹图像

    Figure  9.  Original HRTEM images and lattice fringe images in region of 1, 2, and 3

    图  10  不同区域短、中、长条纹长度假色晶格条纹图像

    Figure  10.  Short, intermediate, and long fringes false-colored by length of different regions

    (a1), (b1), (c1) total fringes of region 1, 2, and 3; (a2), (b2), (c2) short fringes of region 1, 2, and 3; (a3), (b3), (c3) intermediate fringes of region 1, 2, and 3; (a4), (b4), (c4) long fringes of region 1, 2, and 3

    图  11  不同区域条纹取向假色晶格条纹图像

    (a) region 1; (b) region 2; (c) region 3

    Figure  11.  Fringes false-colored by direction of different regions

    图  12  不同区域条纹堆垛假色晶格条纹图像

    (a)region 1; (b) region 2; (c) region 3

    Figure  12.  Fringes false-colored by stacking number of different regions

    图  13  依据堆垛中的层片个数得到的堆垛分布

    Figure  13.  Distribution of stacks according to the number of layers in a stack

    表  1  样品的工业元素分析及镜质组反射率

    Table  1.   Proximate and ultimate analysis, vitrinite reflectance of sample

    SampleProximate
    analysis ω (%)
    Ultimately
    analysis ωdaf (%)
    Ro, max
    MadAadVdafCHONS
    YQ-30.9510.889.9091.723.792.711.340.442.59
    下载: 导出CSV

    表  2  煤样的13C NMR结构参数

    Table  2.   Structural parameters derived from 13C NMR spectrum

    SamplefafacfafaHfaNfaBfaSfaPfalfal*falHfalO
    YQ-30.930.020.910.530.380.240.120.020.070.010.030.03
    Note: fa-total sp2 hybridized C; fal-total sp3 hybridized C; fac -carbonyl group or carboxyl group C; fa’-aromatic C; faH-protonated and aromatic C; faN -non-protonated and aromatic C; faP-aromatic C bonded to hydroxyl or ether oxygen (δ = 150~165); faS -alkylated aromatic C; faB - aromatic bridgehead C; fal*-CH3 or quaternary C; falH -CH or CH2; falO-aliphatic C bonded to oxygen
    下载: 导出CSV

    表  3  六边形芳香片层长度参数

    Table  3.   Length parameters of hexagonal-shaped aromatic layers

    C numberMinL (nm)MaxL (nm)MeanL (nm)
    Benzene0.2460.2840.265
    Naphthalene0.2840.4920.388
    C130.4920.4970.495
    C240.7100.7380.724
    C270.7380.9230.831
    C370.9230.9840.954
    C541.2301.4201.325
    C801.4761.5621.519
    C961.5401.7041.622
    下载: 导出CSV

    表  4  每15°范围内的条纹分布

    Table  4.   Distribution of fringe within 15° bins.

    Angle (°)Distribution of fringes (%)
    Region 1Region 2Region 3
    0~4524.2318.0925.59
    45~9016.046.482.66
    90~13524.9118.439.30
    135~18034.8156.9962.46
    下载: 导出CSV
  • [1] Baset Z H, Pancirov R J, Ashe T R. Organic compounds in coal: Structure and origins[J]. Phys Chem Earth,1980,12:619−630. doi: 10.1016/0079-1946(79)90143-5
    [2] Mathews J P, Chaffee A L. The molecular representations of coal–A review[J]. Fuel,2012,96:1−14. doi: 10.1016/j.fuel.2011.11.025
    [3] 张代钧, 鲜学福. 煤大分子结构研究的进展[J]. 重庆大学学报,1993,16(2):58−63.

    ZHANG Dai-jun, XIAN Xue-fu. Advances in the study of macromolecular structure of coal[J]. J Chongqing Univ,1993,16(2):58−63.
    [4] Li X M, Cao D Y, Zhang S R, Xing X Y. Study of the XRD parameter evolution of coal of different metamorphism types[J]. Coal Geol & Explor,2003,31(3):5−7.
    [5] Jiang J Y, Yang W H, Cheng Y P, Liu Z D, Zhang Q, Zhao K. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification[J]. Fuel,2019,239:559−572. doi: 10.1016/j.fuel.2018.11.057
    [6] Neomagus H W, Everson R C, Roberts M J. Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13C NMR, and HRTEM techniques[J]. Fuel,2015,158:779−792. doi: 10.1016/j.fuel.2015.06.027
    [7] Li Y, Cao X Y, Zhu D Q, Chappell M A, Miller L F, Mao J D. Characterization of coals and their laboratory-prepared black carbon using advanced solid-state 13C nuclear magnetic resonance spectroscopy[J]. Fuel Process. Technol,2012,96:56−64. doi: 10.1016/j.fuproc.2011.12.014
    [8] 葛涛, 张明旭, 马祥梅. 新阳炼焦煤结构的FTIR和XPS谱学表征[J]. 光谱学与光谱分析,2017,37(8):2406−2411.

    GE Tao, ZHANG Ming-xu, MA Xiang-mei. XPS and FTIR Spectroscopy Characterization about the Structure of Coking Coal in Xinyang[J]. Spectrosc Spect Anal,2017,37(8):2406−2411.
    [9] Wu D, Zhang H, Hu G Q, Zhang W Y. Fine Characterization of the Macromolecular Structure of Huainan Coal Using XRD, FTIR, 13C-CP/MAS NMR, SEM, and AFM Techniques[J]. Molecules,2020,25(11).
    [10] 任秀彬, 辛文辉, 张亚婷, 周安宁. 基于HRTEM的低阶烟煤微晶结构研究[J]. 煤炭学报,2015,40(1):242−246.

    REN Xiu-bin, XIN Wen-hui, ZHANG Ya-ting, ZHOU An-ning. Structural alignment of low rank coal using HRTEM technique[J]. J China Coal Soc,2015,40(1):242−246.
    [11] 王小令, 李霞, 曾凡桂, 边洁晶. 基于HRTEM的煤中不同聚集态结构表征[J]. 煤炭学报,2020,45(2):749−759.

    WANG Xiao-ling, LI Xia, ZENG Fan-gui, BIAN Jie-jing. Characterization of different aggregate structures in coal based on HRTEM[J]. J China Coal Soc,2020,45(2):749−759.
    [12] Sharma A, Kyotani T, Tomita A. Direct Observation of Raw Coals in Lattice Fringe Mode Using High-Resolution Transmission Electron Microscopy[J]. Energy Fuel,2001,14(6):1219−1225.
    [13] Mathews J P, Sharma A. The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel,2012,95:19−24. doi: 10.1016/j.fuel.2011.12.046
    [14] Sharma A, Kyotani T, Tomita A. A new quantitative approach for microstructural analysis of coal char using HRTEM images[J]. Fuel,1999,78(10):1203−1212. doi: 10.1016/S0016-2361(99)00046-0
    [15] Wang S Q, Chen H, Zhang X M. Transformation of aromatic structure of vitrinite with different coal ranks by HRTEM in situ heating[J]. Fuel,2020,260:116309. doi: 10.1016/j.fuel.2019.116309
    [16] Feng B, Bhatia S K, Barry J C. Variation of the crystalline structure of coal char during gasification[J]. Energy Fuel,2003,17(3):744−754. doi: 10.1021/ef0202541
    [17] Castro-Marcano F, Winans R E, Chupas P. Fine structure evaluation of the pair distribution function with molecular models of the Argonne Premium coals[J]. Energy Fuel,2012,26:4336−4345. doi: 10.1021/ef300364e
    [18] Fernandez-Alos V, Watson J K, Wal R V. Soot and char molecular representations generated directly from HRTEM lattice fringe images using Fringe3D[J]. Combust Flame,2011,158(9):1807−1813. doi: 10.1016/j.combustflame.2011.01.003
    [19] Niekerk D V, Mathews J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel,2010,89(1):73−82. doi: 10.1016/j.fuel.2009.07.020
    [20] Yehliu K, Wal R L, André L. Boehman. Development of an HRTEM image analysis method to quantify carbon nanostructure[J]. Combust Flame,2011,158(9):1837−1851. doi: 10.1016/j.combustflame.2011.01.009
    [21] 李霞, 曾凡桂, 司加康, 王威, 程丽媛. 不同变质程度煤的高分辨率透射电镜分析[J]. 燃料化学学报,2016,44(3):279−286. doi: 10.3969/j.issn.0253-2409.2016.03.004

    LI Xia, ZENG Fan-gui, SI Jia-kang, WANG Wei, DONG Kui, CHENG Li-yuan. High resolution TEM image analysis of coals with different metamorphic degrees[J]. J Fuel Chem Technol,2016,44(3):279−286. doi: 10.3969/j.issn.0253-2409.2016.03.004
    [22] 张小东, 孔令菲, 秦勇, 张鹏. 龙口褐煤萃取后微晶结构的XRD与HRTEM研究[J]. 煤炭学报,2013,38(06):1025−1030.

    ZHANG Xiao-dong, KONG Ling-fei, QING Yong, ZHANG Peng. Research on the microcrystalline structure of the fractionally-extracted Longkou lignite by XRD and HRTEM[J]. J China Coal Soc,2013,38(06):1025−1030.
    [23] Zhang X M, Wang S Q, Chen H, Guo Q, Li L, Luo G L. Aromatic Structural Characterization of Different-Rank Vitrinites: Using HRTEM, XRD and AFM[J]. Polycycl Aromat Comp,2019,(1):1−12.
    [24] 王绍清, 陈昊, 张小梅, 沙玉明. 不同煤级含树皮体煤HRTEM特征研究[J]. 煤炭技术,2017,36(12):266−268.

    WANG Shao-qing, CHEN Hao, ZHANG Xiao-mei, SHA Yu-ming. HRTEM characteristics of different ranks with coals rich in barkinite[J]. Coal Technol,2017,36(12):266−268.
    [25] 相建华, 曾凡桂, 李彬, 张莉, 李美芬, 梁虎珍. 成庄无烟煤大分子结构表征与模型及分子模拟[J]. 燃料化学学报,2013,(4):391−399. doi: 10.3969/j.issn.0253-2409.2013.04.002

    XIANG Jian-hua, ZENG Fan-gui, LI Bin, ZHANG Li, LI Mei-fen, LIANG Hu-zhen. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. J Fuel Chem Technol,2013,(4):391−399. doi: 10.3969/j.issn.0253-2409.2013.04.002
    [26] 郝盼云, 孟艳军, 曾凡桂, 闫涛滔, 徐光波. 红外光谱定量研究不同煤阶煤的化学结构[J]. 光谱学与光谱分析,2020,40(3):787−792.

    HAO Pan-yun, MENG Yan-jun, ZENG Fan-gui, YAN Tao-tao, XU Guang-bo. Quantitative Study of Chemical Structures of Different Rank Coals Based on Infrared Spectroscopy[J]. Spectrosc Spect Anal,2020,40(3):787−792.
    [27] 李霞, 曾凡桂, 王威, 董夔, 程丽媛. 低中煤级煤结构演化的FTIR表征[J]. 煤炭学报,2015,40(12):2900−2908.

    LI Xia, ZENG Fan-gui, WANG Wei, DONG Kui, CHENG Li-yuan. FTIR characterization of structural evolution in low-middle rank coals[J]. J China Coal Soc,2015,40(12):2900−2908.
    [28] Zhong Q F, Mao Q Y, Zhang L Y, Xiang J H, Xiao J, Mathews J P. Structural features of Qingdao petroleum coke from HRTEM lattice fringes: Distributions of length, orientation, stacking, curvature, and a large-scale image-guided 3D atomistic representation[J]. Carbon,2018,129:790−802. doi: 10.1016/j.carbon.2017.12.106
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回