留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis of ZSM-22/ZSM-23 intergrowth zeolite as the catalyst support for hydroisomerization of n-hexadecane

SONG Cheng-ye MENG Ji-peng LI Chuang ZEYAODONG Pahaer LIANG Chang-hai

宋成业, 孟记朋, 李闯, 帕哈尔·泽耀东, 梁长海. ZSM-22/ZSM-23共晶分子筛的合成及其正十六烷加氢异构催化性能[J]. 燃料化学学报(中英文), 2021, 49(5): 712-726. doi: 10.1016/S1872-5813(21)60061-0
引用本文: 宋成业, 孟记朋, 李闯, 帕哈尔·泽耀东, 梁长海. ZSM-22/ZSM-23共晶分子筛的合成及其正十六烷加氢异构催化性能[J]. 燃料化学学报(中英文), 2021, 49(5): 712-726. doi: 10.1016/S1872-5813(21)60061-0
SONG Cheng-ye, MENG Ji-peng, LI Chuang, ZEYAODONG Pahaer, LIANG Chang-hai. Synthesis of ZSM-22/ZSM-23 intergrowth zeolite as the catalyst support for hydroisomerization of n-hexadecane[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 712-726. doi: 10.1016/S1872-5813(21)60061-0
Citation: SONG Cheng-ye, MENG Ji-peng, LI Chuang, ZEYAODONG Pahaer, LIANG Chang-hai. Synthesis of ZSM-22/ZSM-23 intergrowth zeolite as the catalyst support for hydroisomerization of n-hexadecane[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 712-726. doi: 10.1016/S1872-5813(21)60061-0

ZSM-22/ZSM-23共晶分子筛的合成及其正十六烷加氢异构催化性能

doi: 10.1016/S1872-5813(21)60061-0
详细信息
  • 中图分类号: O643.32

Synthesis of ZSM-22/ZSM-23 intergrowth zeolite as the catalyst support for hydroisomerization of n-hexadecane

Funds: The project was supported by the National Key Research & Development Program of China (2016YFB0600305), the National Natural Science Foundation of China (22038008) and the China Postdoctoral Science Foundation (2019M651119).
More Information
  • 摘要: 在二甲胺与二乙胺双模板剂体系中,通过控制二甲胺/二乙胺的摩尔比为24,动态水热合成了ZSM-22/ZSM-23共晶分子筛。采用XRD、FE-SEM、TEM、N2物理吸附、NH3-TPD和吡啶吸附红外等表征手段,考察了ZSM-22/ZSM-23共晶分子筛样品的物理化学性质,并对其负载Pt后在正十六烷加氢异构化反应中的催化性能进行了研究。结果表明,针状的ZSM-22/ZSM-23分子筛具有与ZSM-22和ZSM-23不同的拓扑结构,其Brönsted酸量及中强酸比例较高。对于正十六烷加氢异构化,相比于单一分子筛和机械混合分子筛催化剂,采用共晶分子筛通过浸渍法制备的双功能Pt/ZSM-22/ZSM-23催化剂同时具备Pt/ZSM-22高选择性以及Pt/ZSM-23高转化率的优势,表现出更高的异构体收率,并具有一定的择形效应,异构化产物以单甲基异构体为主。
  • FIG. 663.  FIG. 663.

    FIG. 663. 

    Figure  1  XRD patterns of the as-synthesized zeolite samples for the gel of 1 SiO2 : 0.01 Al2O3 : w DMA : x DEA : y H2O : m NaOH at 180 °C for z h: (a) varying DMA/DEA ratio; (b) varying crystallization time; (c) varying NaOH amount; (d) varying water quantity

    Figure  2  XRD patterns of Pt/ZSM-22/ZSM-23, Pt/ZSM-22, Pt/ZSM-23 and Pt/MZSM-22/ZSM-23

    Figure  3  FE-SEM images of (a) ZSM-22/ZSM-23, (b) ZSM-22, (c) ZSM-23 and (d) MZSM-22/ZSM-23

    Figure  4  N2 adsorption-desorption isotherms and pore size distribution of various zeolites and catalysts

    Figure  5  TEM images of (a) Pt/ZSM-22/ZSM-23, (b) Pt/ZSM-22, (c) Pt/ZSM-23 and (d) Pt/MZSM-22/ZSM-23

    Figure  6  27Al MAS NMR spectra of (a) ZSM-22/ZSM-23, (b) ZSM-22, (c) ZSM-23, and (d) MZSM-22/ZSM-23

    Figure  7  29Si MAS NMR spectra of (a) ZSM-22/ZSM-23, (b) ZSM-22, (c) ZSM-23, and (d) MZSM-22/ZSM-23

    Figure  8  NH3-TPD profiles of (a) ZSM-22/ZSM-23, (b) ZSM-22, (c) ZSM-23, and (d) MZSM-22/ZSM-23

    Figure  9  Py-FTIR spectra of as-prepared zeolites at different desorption temperatures

    Figure  10  Conversion of n-C16 (a), selectivity to i-C16 (b), and yield of i-C16 (c) as a function of temperature over different catalysts

    Table  1  Effect of gel composition and synthetic conditions on the crystallization products

    EntryDMA/DEASDA/SiO2OH/SiO2H2O/SiO2Time t/hProductRC/%
    1300.930.15a4572ZSM-23+ cristobalite
    2240.750.15a4572ZSM-22/ZSM-23+ZSM-571
    3240.750.10a4566ZSM-22/ZSM-23100
    4241.000.15a4572ZSM-22/ZSM-23+ZSM-569
    5180.570.15a4572ZSM-22+ cristobalite
    6120.390.15a4572ZSM-22+ cristobalite
    780.810.15a4572ZSM-22+cristobalite
    8240.750.3a4572ZSM-22/ZSM-23+cristobalite32
    9240.750.2a4572ZSM-22/ZSM-23+ZSM-549
    10240.750.12a4572ZSM-22/ZSM-23+cristobalite61
    11240.750.12a4566ZSM-22/ZSM-23+ cristobalite79
    12240.750.08a4572ZSM-22/ZSM-23+amorphous83
    13240.750.05a4572amorphous
    14240.750.3b4572ZSM-22/ZSM-23+cristobalite
    15240.750.2b4572ZSM-22/ZSM-2373
    16240.750.15b4566ZSM-22/ZSM-2387
    17240.750.10b4566ZSM-22/ZSM-2378
    18240.750.10a4584ZSM-5+cristobalite
    19240.750.10a4578ZSM-5+ZSM-22/ZSM-23+cristobalite45
    20240.750.10a4572ZSM-22/ZSM-23+cristobalite86
    21240.750.10a4560ZSM-22/ZSM-2392
    22240.750.10a4554ZSM-22/ZSM-23+amorphous49
    23240.750.10a3866ZSM-22/ZSM-23+cristobalite86
    24240.750.10a3066ZSM-22/ZSM-23+cristobalite67
    note: a: the alkali source was NaOH; b: the alkali source was KOH
    下载: 导出CSV

    Table  2  Textural properties of as-prepared zeolites and catalysts

    SampleSurface area/(m2·g−1)Pore volume /(cm3·g−1)Average pore width d/nm
    SBETaSMicrobSExbvTotalcvMicrob
    ZSM-22/ZSM-23198101970.620.050.51
    ZSM-2216169920.620.030.50
    ZSM-23208109990.510.050.53
    MZSM-22/ZSM-23209981110.660.050.52
    Pt/ZSM-22/ZSM-23203106970.360.050.51
    Pt/ZSM-22157401170.590.020.46
    Pt/ZSM-23198109890.300.050.53
    Pt/MZSM-22/ZSM-232111111000.420.050.53
    note: a: calculated by multi-BET equation; b: measured by t-plot method, SEx = SBETSMicro; c: determined at p/p0 = 0.99; d: derived by HK method
    下载: 导出CSV

    Table  3  SiO2/Al2O3 ratios, 27Al NMR data and NH3-TPD analysis results of various zeolites

    SampleAcidic density/(NH3 mmol·g−1)SiO2/Al2O3aAl(VI) b/%
    weakmediumstrongtotal
    ZSM-22/ZSM-230.130.050.050.24799
    ZSM-220.110.050.060.227421
    ZSM-230.180.040.140.35788
    MZSM-22/ZSM-230.150.050.100.307415
    note: a: determined by ICP-AES; b: derived from the 27Al-NMR spectra
    下载: 导出CSV

    Table  4  Acidity distribution of as-synthesized zeolites derived from Py-FTIR

    SampleLewis acid, CL/(mmol·g−1) Brönsted acid, CB/(mmol·g−1)
    150 °C300 °C450 °C 150 °C300 °C450 °C
    ZSM-22/ZSM-230.0600.0450.025 0.3150.3120.283
    ZSM-220.1050.0630.045 0.0930.0870.078
    ZSM-230.0250.0160.011 0.4340.4160.386
    MZSM-22/ZSM-230.0860.0660.051 0.2480.2320.228
    下载: 导出CSV

    Table  5  Product distribution of the n-hexadecane hydroisomerization over different catalysts

    Carbon numberProductDistributiona /%
    Pt/ZSM-22/ZSM-23Pt/ZSM-22Pt/ZSM-23Pt/MZSM-22/ZSM-23
    ≤4≤C48.810.219.77.2
    52M-C43.42.66.03.4
    n-C55.76.09.36.2
    62M-C52.51.72.72.4
    3M-C51.30.81.31.2
    n-C64.34.76.55.3
    72M-C62.21.42.52.7
    3M-C61.40.61.41.6
    n-C73.83.76.45.5
    82M-C71.80.62.02.2
    3M-C70.80.30.91.1
    n-C81.62.32.72.4
    92M-C80.70.60.60.5
    n-C910.80.70.5
    12n-C121.51.81.81.5
    131.93.52.01.9
    162M-C158.816.25.17.5
    3M-C158.59.76.07.8
    4M-C155.95.23.55.6
    5M-C155.76.74.06.0
    6M-C153.75.53.54.8
    7M-C151512.66.813.2
    DiMe-C149.72.84.79.9
    note: a: reaction conditions: H2/feed ratio, 300 mL/mL, contact time, 1.12 min, 320 °C and 4.0 MPa
    下载: 导出CSV
  • [1] KIM J, HAN S W, KIM J C, RYOO R. Supporting nickel to replace platinum on zeolite nanosponges for catalytic hydroisomerization of n-dodecane[J]. ACS Catal,2018,8(11):10545−10554. doi: 10.1021/acscatal.8b03301
    [2] LEE S W, IHM S K. Characteristics of magnesium-promoted Pt/ZSM-23 catalyst for the hydroisomerization of n-hexadecane[J]. Ind Eng Chem Res,2013,52(44):15359−15365. doi: 10.1021/ie400628q
    [3] YU D K, FU M L, YUAN Y H, SONG Y B, CHEN J Y, FANG Y W. One-step synthesis of hierarchical-structured ZSM-5 zeolite[J]. J Fuel Chem Technol,2016,44(11):1363−1369. doi: 10.1016/S1872-5813(16)30059-7
    [4] ZHANG M, LI C, CHEN X, CHEN Y, LIANG C. Hierarchical ZSM-48-supported nickel catalysts with enhanced hydroisomerization performance of hexadecane[J]. Ind Eng Chem Res,2019,58(43):19855−19861. doi: 10.1021/acs.iecr.9b04415
    [5] LV G, WANG C X, WANG P, SUN L, LIU H, QU W, WANG D G, MA H J, TIAN Z J. Pt/ZSM-22 with partially filled micropore channels as excellent shape-selective hydroisomerization catalyst[J]. ChemCatChem,2019,11(5):1431−1436. doi: 10.1002/cctc.201801695
    [6] LIU P, REN J, SUN Y H. Influence of template on Si distribution of SAPO-11 and their performance for n-paraffin isomerization[J]. Microporous Mesoporous Mater,2008,114(1/3):365−372. doi: 10.1016/j.micromeso.2008.01.022
    [7] YUNFENG H, XIANGSHENG W, XINWEN G, SILUE L, SHENG H, HAIBO S, LIANG B. Effects of channel structure and acidity of molecular sieves in hydroisomerization of n-octane over bi-functional catalysts[J]. Catal Lett,2005,100(1/2):59−65. doi: 10.1007/s10562-004-3086-9
    [8] SHI J, WANG Y, YANG W, TANG Y, XIE Z. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes[J]. Chem Soc Rev,2015,44(24):8877−8903. doi: 10.1039/C5CS00626K
    [9] CHEN Y J, LI C, CHEN X, LIU Y, LIANG C H. Synthesis of ZSM-23 zeolite with dual structure directing agents for hydroisomerization of n-hexadecane[J]. Microporous Mesoporous Mater,2018,268:216−224. doi: 10.1016/j.micromeso.2018.04.033
    [10] ZHENG J J, ZHANG X W, ZHANG Y, MA J H, LI R F. Structural effects of hierarchical pores in zeolite composite[J]. Microporous Mesoporous Mater,2009,122(1/3):264−269. doi: 10.1016/j.micromeso.2009.03.009
    [11] OHSUNA T, TERASAKI O, NAKAGAWA Y, ZONES S I, HIRAGA K. Electron microscopic study of intergrowth of MFL and MEL: Crystal faults B-MEL[J]. J Phy Chem B,1997,101(48):9881−9885. doi: 10.1021/jp971448y
    [12] CLAUDE M C, VANBUTSELE G, MARTENS J A. Dimethyl branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. J Catal,2001,203(1):213−231. doi: 10.1006/jcat.2001.3325
    [13] CHEN Y, LI C, WANG L, ZHANG M, LIANG C. Seed-assisted synthesis of ZSM-23 zeolites in the absence of alkali metal ions[J]. Microporous Mesoporous Mater,2017,252:146−153. doi: 10.1016/j.micromeso.2017.06.013
    [14] ROLLMANN L D, SCHLENKER J L, LAWTON S L, KENNEDY C L, KENNEDY G J, DOREN D J. On the role of small amines in zeolite synthesis[J]. J Phy Chem B,1999,103(34):7175−7183. doi: 10.1021/jp991913m
    [15] LATEEF S A, BAKARE I A, MAYORAL A, SEBASTIAN V, MURAZA O. Selective catalytic cracking of n-hexane to olefins over SSZ-54 fabricated by facile and novel dual templating method[J]. Fuel,2018,227:48−58. doi: 10.1016/j.fuel.2018.03.161
    [16] WANG B, TIAN Z, LI P, WANG L, XU Y, QU W, MA H, XU Z, LIN L. Synthesis of ZSM-23/ZSM-22 intergrowth zeolite with a novel dual-template strategy[J]. Mater Res Bull,2009,44(12):2258−2261. doi: 10.1016/j.materresbull.2009.07.017
    [17] BURTON A W, ZONES S I, REA T, CHAN I Y. Preparation and characterization of SSZ-54: A family of MTT/TON intergrowth materials[J]. Microporous Mesoporous Mater,2010,132(1-2):54−59. doi: 10.1016/j.micromeso.2009.10.023
    [18] MUNUSAMY K, DAS R K, GHOSH S, KUMAR S A K, PAI S, NEWALKAR B L. Synthesis, characterization and hydroisomerization activity of ZSM-22/23 intergrowth zeolite[J]. Microporous Mesoporous Mater,2018,266:141−148. doi: 10.1016/j.micromeso.2018.02.044
    [19] ZHANG M, WANG L, CHEN Y, ZHANG Q, LIANG C. Creating mesopores in ZSM-48 zeolite by alkali treatment: Enhanced catalyst for hydroisomerization of hexadecane[J]. J Energy Chem,2016,25(3):539−544. doi: 10.1016/j.jechem.2016.01.014
    [20] CHI K, ZHAO Z, TIAN Z, HU S, YAN L, LI T, WANG B, MENG X, GAO S, TAN M, LIU Y. Hydroisomerization performance of platinum supported on ZSM-22/ZSM-23 intergrowth zeolite catalyst[J]. Pet Sci,2013,10(2):242−250. doi: 10.1007/s12182-013-0273-6
    [21] ZHANG M, CHEN Y, WANG L, ZHANG Q, TSANG C W, LIANG C. Shape selectivity in hydroisomerization of hexadecane over Pt supported on 10-ring zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48[J]. Ind Eng Chem Res,2016,55(21):6069−6078. doi: 10.1021/acs.iecr.6b01163
    [22] ABOUL-FOTOUH S M K, ALI L I, NAGHMASH M A, ABOUL-GHEIT N A K. Effect of the Si/Al ratio of HZSM-5 zeolite on the production of dimethyl ether before and after ultrasonication[J]. J Fuel Chem Technol,2017,45(5):581−588. doi: 10.1016/S1872-5813(17)30030-0
    [23] WANG C, ZHANG L, HUANG X, ZHU Y, LI G K, GU Q, CHEN J, MA L, LI X, HE Q, XU J, SUN Q, SONG C, PENG M, SUN J, MA D. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene[J]. Nat Commun,2019,10(1):4348. doi: 10.1038/s41467-019-12285-4
    [24] LI H R, LIU C L, WANG Y, ZHENG J J, FAN B B, LI R F. Synthesis, characterization and n-hexane hydroisomerization performances of Pt supported on alkali treated ZSM-22 and ZSM-48[J]. RSC Adv,2018,8(51):28909−28917. doi: 10.1039/C8RA04858D
    [25] WANG B C, TIAN Z J, LI P, WANG L, XU Y P, QU W, HE Y L, MA H J, XU Z S, LIN L W. A novel approach to synthesize ZSM-23 zeolite involving N, N-dimethylformamide[J]. Microporous Mesoporous Mater,2010,134(1/3):203−209. doi: 10.1016/j.micromeso.2010.06.001
    [26] MAZUREK M, BENKER N, ROTH C, FUESS H. Binary mixtures of carbon supported Pt and Ru catalysts for PEM fuel cells[J]. Fuel Cells,2006,6(3/4):208−213. doi: 10.1002/fuce.200600012
    [27] LATEEF S A, BAKARE I A, MURAZA O. Microwave assisted synthesis of MTT-TON intergrowth crystals for the catalytic conversion of naphtha to olefins[J]. Microporous Mesoporous Mater,2018,260:253−259. doi: 10.1016/j.micromeso.2017.10.023
    [28] CHEN Z, LIU S, WANG H, NING Q, ZHANG H, YUN Y, REN J, LI Y W. Synthesis and characterization of bundle-shaped ZSM-22 zeolite via the oriented fusion of nanorods and its enhanced isomerization performance[J]. J Catal,2018,361:177−185. doi: 10.1016/j.jcat.2018.02.019
    [29] CHEN Y, LI C, CHEN X, LIU Y, TSANG C-W, LIANG C. Synthesis and characterization of iron-substituted ZSM-23 zeolite catalysts with highly selective hydroisomerization of n-hexadecane[J]. Ind Eng Chem Res,2018,57(41):13721−13730. doi: 10.1021/acs.iecr.8b03806
    [30] BLEKEN F L, BARBERA K, BONINO F, OLSBYE U, LILLERUD K P, BORDIGA S, BEATO P, JANSSENS T V W, SVELLE S. Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons[J]. J Catal,2013,307:62−73. doi: 10.1016/j.jcat.2013.07.004
    [31] MURAZA O, BAKARE I A, TAGO T, KONNO H, TANIGUCHI T, AL-AMER A M, YAMANI Z H, NAKASAKA Y, MASUDA T. Selective catalytic cracking of n-hexane to propylene over hierarchical MTT zeolite[J]. Fuel,2014,135:105−111. doi: 10.1016/j.fuel.2014.06.045
    [32] MOELLER K, BEIN T. Crystallization and porosity of ZSM-23[J]. Microporous Mesoporous Mater,2011,143(2/3):253−262. doi: 10.1016/j.micromeso.2010.12.019
    [33] CLAUDE M C, MARTENS J A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. J Catal,2000,190(1):39−48. doi: 10.1006/jcat.1999.2714
    [34] ZHANG F, LIU Y, SUN Q, DAI Z, GIES H, WU Q, PAN S, BIAN C, TIAN Z, MENG X, ZHANG Y, ZOU X, YI X, ZHENG A, WANG L, XIAO F S. Design and preparation of efficient hydroisomerization catalysts by the formation of stable SAPO-11 molecular sieve nanosheets with 10-20 nm thickness and partially blocked acidic sites[J]. Chem Commun,2017,53(36):4942−4945. doi: 10.1039/C7CC01519D
    [35] WU T, YUAN G M, CHEN S L, XUE Y, LI S J. Synthesis of ZSM-5 and its application in butylene catalytic cracking[J]. J Fuel Chem Technol,2017,45(2):182−188. doi: 10.1016/S1872-5813(17)30013-0
    [36] XU H, ZHANG J, WU Q M, CHEN W, LEI C, ZHU Q Y, HAN S C, FEI J H, ZHENG A M, ZHU L F, MENG X J, MAURER S, DAI D, PARVULESCU A N, MULLER U, XIAO F S. Direct synthesis of aluminosilicate SSZ-39 zeolite using colloidal silica as a starting source[J]. ACS Appl Mater Interfaces,2019,11(26):23112−23117. doi: 10.1021/acsami.9b03048
    [37] DANILINA N, KRUMEICH F, CASTELANELLI S A, VAN BOKHOVEN J A. Where are the active sites in zeolites? origin of aluminum zoning in ZSM-5[J]. J Phys Chem C,2010,114(14):6640−6645. doi: 10.1021/jp1006044
    [38] ZHANG Y, LIU Y, SUN L, ZHANG L, XU J, DENG F, GONG Y. Synthesis of EU-1/ZSM-48 Co-crystalline zeolites from high-silica EU-1 seeds: tailoring phase proportions and promoting long crystalline-phase stability[J]. Chem Eur J,2018,24(25):6595−6605. doi: 10.1002/chem.201705805
    [39] DANISI R M, SCHMIDT J E, PAIONI A L, HOUBEN K, POPLAWSKY J D, BALDUS M, WECKHUYSEN B M, VOGT E T C. Revealing long- and short-range structural modifications within phosphorus-treated HZSM-5 zeolites by atom probe tomography, nuclear magnetic resonance and powder X-ray diffraction[J]. Phys Chem Chem Phys,2018,20(44):27766−27777. doi: 10.1039/C8CP03828G
    [40] YANG Z C, LIU Y Q, LIU D D, MENG X T, LIU C G. Hydroisomerization of n-octane over bimetallic Ni-Cu/SAPO-11 catalysts[J]. Appl Catal A: Gen,2017,543:274−282. doi: 10.1016/j.apcata.2017.06.028
    [41] TIAN S S, CHEN J X. Hydroisomerization of n-dodecane on a new kind of bifunctional catalyst: Nickel phosphide supported on SAPO-11 molecular sieve[J]. Fuel Process Technol,2014,122:120−128. doi: 10.1016/j.fuproc.2014.01.031
    [42] GAO S B, ZHAO Z, LU X F, CHI K B, DUAN A J, LIU Y F, MENG X B, TAN M- W, YU H Y, SHEN Y G, LI M C. Hydrocracking diversity in n-dodecane isomerization on Pt/ZSM-22 and Pt/ZSM-23 catalysts and their catalytic performance for hydrodewaxing of lube base oil[J]. Pet Sci,2020,17(6):1752−1763. doi: 10.1007/s12182-020-00500-7
    [43] MILLER S J, LACHEEN H S, CHEN C Y. Determining the strength of Bronsted acid sites for hydrodewaxing over shape-selective catalysts[J]. Ind Eng Chem Res,2016,55(24):6760−6767. doi: 10.1021/acs.iecr.6b01081
    [44] TEKETEL S, SKISTAD W, BENARD S, OLSBYE U, LILLERUD K P, BEATO P, SVELLE S. Shape selectivity in the conversion of methanol to hydrocarbons: The catalytic performance of one-dimensional 10-ring zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1[J]. ACS Catal,2012,2(1):26−37. doi: 10.1021/cs200517u
    [45] HENGSAWAD T, SRIMINGKWANCHAI C, BUTNARK S, RESASCO D E, JONGPATIWUT S. Effect of metal-acid balance on hydroprocessed renewable jet fuel synthesis from hydrocracking and hydroisomerization of biohydrogenated diesel over Pt-supported catalysts[J]. Ind Eng Chem Res,2018,57(5):1429−1440. doi: 10.1021/acs.iecr.7b04711
    [46] HUYBRECHTS W, THYBAUT J, DEWAELE B, VANBUTSELE G, HOUTHOOFD K, BERTINCHAMPS F, DENAYER J, GAIGNEAUX E, MARIN G, BARON G. Bifunctional catalytic isomerization of decane over MTT-type aluminosilicate zeolite crystals with siliceous rim[J]. J Catal,2006,239(2):451−459. doi: 10.1016/j.jcat.2006.02.020
    [47] CHOUDHURY I R, HAYASAKA K, THYBAUT J W, NARASIMHAN C S L, DENAYER J F, MARTENS J A, MARIN G B. Pt/H-ZSM-22 hydroisomerization catalysts optimization guided by single-event microkinetic modeling[J]. J Catal,2012,290:165−176. doi: 10.1016/j.jcat.2012.03.015
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  663
  • HTML全文浏览量:  200
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-01-23
  • 网络出版日期:  2021-03-15
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回