Abstract:
Two gas coals were respectively separated into four components with different vitrinite content using ZnCl
2 solution. The carbon structure, composition of coal macerals and minerals, and plastic layer behavior of separating components were characterized by nuclear magnetic resonance spectrometer (
13C NMR), coal rock analyzer, X-ray fluorescence spectrometry (XRF) and Gieseler fluidity. Combining with X-ray photoelectron spectroscopy (XPS), effect of different gas coal separation components on sulfur transformation behavior during pyrolysis of high-sulfur coal and distribution of sulfur forms in coke was investigated. The results show that with increase of vitrinite content in gas coal, the relative ratio of aliphatic carbon in coal increases, and the release amount of volatiles increases during pyrolysis; hydrogen free radicals in volatiles promote decomposition of sulfur, stabilize sulfur free radicals in time and release as sulfur-containing gases, and thus sulfur content in coke is reduced. Low density components in gas coal have the largest maximum fluidity and widest plastic range, and stability of plastic layer is the best during co-pyrolysis with high sulfur coal. The basic minerals in gas coal are mainly enriched in high density components, which leads to increase of sulfide sulfur and sulfate sulfur in the coke. For utilization of gas coal in coal-blending pyrolysis, enrichment of vitrinite and selection of coals with easier removal of alkaline minerals are beneficial for reducing sulfur in coke.