生物质气再燃脱除流化床N2O的机理研究

Mechanism of N2O reduction by biomass gasification gas reburning

  • 摘要: 利用密度泛函理论和过渡态理论,在分子水平上研究了循环流化床锅炉再燃过程中生物质气CO对CaO催化N2O脱除的影响。构建了N2O分子在CaO(100)表面的吸附模型,同时对N2O分子在CaO(100)表面的分解及还原过程进行了探究。结果表明,N2O在CaO(100)表面的异相分解相比于N2O的均相分解所需的能垒更低,CaO的存在有利于N2O的分解;CaO(100)表面的O活性位点被N2O分解产生的原子O毒化,而再燃过程中生物质气CO促进了CaO(100)表面活性位点的再生,有利于CaO对N2O分解的催化作用。

     

    Abstract: A molecular modeling based on the density functional theory (DFT) and the transition state theory (TST) was performed to investigate the influence of biomass gas CO on the N2O decomposition catalyzed by CaO during reburning in the circulating fluidized bed boiler. The model for N2O adsorption onto the CaO(100) surfaces were constructed; and the processes of the N2O decomposition on the CaO(100) surface and the surface recovery of CaO(100) were investigated. The results illustrate that the energy barrier of N2O decomposition on the CaO(100) surface is much lower than that in homogeneous case, and CaO is therefore able to catalyze the N2O decomposition. The atomic O from N2O decomposition can poison the active sites O atom on the CaO(100) surface, while biomass gas CO can promote the regeneration of the active sites on the surface of CaO(100), which is beneficial for CaO to catalyze the N2O removal.

     

/

返回文章
返回