留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Zr-TiO2 catalyst on NO emission from coal-burning and its catalytic mechanism

WANG Shu-qin FU Hao CHENG Wei-liang FU Yi

王淑勤, 付豪, 程伟良, 付懿. Zr-TiO2催化剂对燃煤NO析出特性的影响及其催化机理[J]. 燃料化学学报(中英文), 2021, 49(7): 909-917. doi: 10.1016/S1872-5813(21)60106-8
引用本文: 王淑勤, 付豪, 程伟良, 付懿. Zr-TiO2催化剂对燃煤NO析出特性的影响及其催化机理[J]. 燃料化学学报(中英文), 2021, 49(7): 909-917. doi: 10.1016/S1872-5813(21)60106-8
WANG Shu-qin, FU Hao, CHENG Wei-liang, FU Yi. Effect of Zr-TiO2 catalyst on NO emission from coal-burning and its catalytic mechanism[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 909-917. doi: 10.1016/S1872-5813(21)60106-8
Citation: WANG Shu-qin, FU Hao, CHENG Wei-liang, FU Yi. Effect of Zr-TiO2 catalyst on NO emission from coal-burning and its catalytic mechanism[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 909-917. doi: 10.1016/S1872-5813(21)60106-8

Zr-TiO2催化剂对燃煤NO析出特性的影响及其催化机理

doi: 10.1016/S1872-5813(21)60106-8
详细信息
  • 中图分类号: X511

Effect of Zr-TiO2 catalyst on NO emission from coal-burning and its catalytic mechanism

Funds: The project was supported by the National Basic Research Program of China (2018YFB060420103)
More Information
  • 摘要: 采用浸渍法与微波法制取改性的Zr-TiO2,利用管式炉进行劣质煤NO析出实验,探究了脱硫剂、不同方法制备的改性TiO2对劣质煤NO排放的影响及煤种的适应性,并对制备的Zr-TiO2及其煤焦进行XRD、BET、SEM、XPS、TGA表征分析,得出脱硝机理。结果表明,脱硫剂的添加会促进NO的析出,在燃烧温度850 ℃、氧气流量40 mL/min、脱硫剂为MgO时,催化剂为浸渍法5% Zr-TiO2时NO的排放量最低,比纯TiO2低51.0%,比同条件下纯煤燃烧时低84.6%;对选用的10个煤种的适应性实验结果表明,制备的浸渍法5% Zr-TiO2催化剂能够适用于硫分 < 3%、灰分 < 30%的煤种,拓宽了催化剂的应用范围;Zr的掺杂抑制了晶粒增长,增强了活性组分,使得吸附氧含量增多,促进了催化过程中元素价态的转化,加速了挥发分的析出,起到了助燃作用,增大了煤焦的比表面积,增强了煤焦的异相还原能力。
  • FIG. 796.  FIG. 796.

    FIG. 796. 

    Figure  1  NO emission concentration before and after adding additives

    Figure  2  Effect of oxygen flow rate

    Figure  3  Effect of temperature

    Figure  4  Effect of doping amount of Zr by impregnation method

    Figure  5  Effect of preparation methods on NO emission

    Figure  6  NO removal efficiency for five coals

    Figure  7  NO removal efficiency for other five coals

    Figure  8  XRD spectra of pure TiO2 and modified TiO2

    Figure  9  Adsorption and desorption curves ((a) & (b)) of catalysts and pore diameter distribution diagram (c)

    Figure  10  SEM of TiO2

    Figure  11  High resolution XPS spectrogram of catalyst elements

    Figure  12  Thermogravimetric analysis of samples

    Figure  13  SEM images of coal chars

    Figure  14  Mechanism of catalytic denitrification

    Table  1  Results of ultimate analysis of the coals

    Sample name Ultimate analysis w/%
    CHNS
    a67.914.201.210.69
    b47.253.270.741.37
    c64.012.831.002.01
    d69.364.010.963.82
    e67.714.500.902.82
    f39.012.560.621.35
    g62.293.550.851.31
    h67.904.460.870.85
    i71.513.301.193.25
    j60.383.100.851.81
    下载: 导出CSV

    Table  2  Results of proximate analysis of the coals

    Sample nameMad/%Vad/%Aad/%FCad/%Qnet,ad/(MJ·kg−1)Calorific value (kilocalorie)/(cal·g−1)
    a9.6736.8719.7433.7219.244601
    b2.9328.0636.5032.5117.994302
    c2.4913.0923.6560.7724.485854
    d2.0525.6018.1854.1726.036225
    e8.7149.0113.5528.7321.475134
    f4.2120.7353.5621.5010.882602
    g5.4120.2124.6049.7821.535149
    h4.9037.087.1850.8427.546586
    i3.1415.8920.4160.5625.106002
    j3.1816.5127.4752.8422.245319
    下载: 导出CSV

    Table  3  BET data of catalysts

    SampleSpecific surface area A/(m2·g−1)Average pore size d/nmPore volume v/(cm3·g−1)
    Pure TiO222.2831.890.0493
    5% impregnation59.4218.270.4747
    1% microwave51.668.640.2390
    下载: 导出CSV

    Table  4  Ignition and burnout temperature of samples

    SampleIgnition temperature/℃Burnout temperature/℃
    Coal d490.55709.25
    d + CaO514.42
    d + MgO503.39714.86
    d + CaO + TiO2503.81759.49
    d + MgO + TiO2500.9686.63
    下载: 导出CSV

    Table  5  NO removal efficiency of coal char before and after adding additives

    Coal char sampleabcde
    Without adding
    additives
    98.3%89.1%96.8%91.1%96.7%
    With adding
    additives
    98.0%97.2%98.8%97.4%98.0%
    下载: 导出CSV

    Table  6  BET data of coal char

    Coal charBET surface area A/(m2·g−1)Pore size d/nmPore volume v/(cm3·g−1)
    d + MgO2.512.280.0097
    d + MgO + TiO239.9916.660.0112
    下载: 导出CSV
  • [1] ZHANG J X, ZHOU A N, RUN N, CHENG F X, HE X F, YANG Z Y, ZHANG Y T. Controllable preparation of magnetic Mo/HZSM-5@SiO2@Fe3O4 catalyst and its application in coal pyrolysis[J/OL]. J China Coal Soc, 1-10 [2020-07-21]. https://doi.org/10.13225/j.cnki.jccs.2019.1807.
    [2] ZHANG Y G. Utilization technology of inferior coal[J]. Coal Chem Ind,2002,30(5):24−27.
    [3] LIANG L T, ZHANG Q, HUANG W, et al. Characteristics of pore structure and gasification reactivity of CO2 in catalytic defocusing of low-rank coals [J/OL]. J China Coal Soc, 1-8[2020-07-21]. https://doi.org/10.13225/j.cnki.jccs.2019.1194.
    [4] LI H. Experimental study on photocatalytic reduction of CO2 by metal-doped nano-TiO2[D]. Huainan: Anhui University of Science and Technology, 2019.
    [5] WANG S Q, FU P, HAO L X. Kinetics and mechanism of visible-light photocatalytic oxidation of SO2 over vanadium-doped TiO2[J]. Acta Energ Sol Sin,2015,36(11):2690−2697.
    [6] QI X. Study on modified TiO2 supported Fe-Mn catalyst for denitrification[D]. Tangshan: North China University of Technology, 2018.
    [7] WANG L J. Preparation, modification and photocatalytic activity of supported TiO2[D]. Dalian: Dalian University of Technology, 2016.
    [8] WANG S Q. Experimental study on desulfurization and denitrification with nano-combustion-supporting additive[D]. Baoding: North China Electric Power University, 2009.
    [9] YIN D Q. Effect of additives on the efficiency of denitration and mercury removal of inferior coal during combustion[D]. Baoding: North China Electric Power University, 2018.
    [10] LIU M Z. Effect of modified TiO2 on mercury removal and denitration efficiency during biomass and coal combustion[D]. Baoding: North China Electric Power University, 2017.
    [11] OKASHA F. Enhancing sulphur self-retention by building-in CaO in straw-bitumen pellets[J]. Fuel Process Technol,2007,88(4):401−408. doi: 10.1016/j.fuproc.2006.12.001
    [12] LIN R, SU Y X, CHENG J H, ZHANG X W, WEN N N, DENHG W Y, ZHOU H, ZHJAO B T. Reduction of NO by methane over Fe/Ga2O3-Al2O3 catalyst[J]. Chin J Environ Eng,2020,14(6):1592−1604.
    [13] JIANG Y, LIANG G T, BAO C Z, RUN Y, WANG X C, XING Z M. Selective catalytic reduction of NOx in flue gas over Zr-modified CeO2/TiO2 catalyst[J]. J China Univ Pet (Nat Sci Ed),2017,41(5):139−145.
    [14] LIU Q, CHENG X L, LI D H, YANG Z J. Effect of Zr doping on electronic structure and optical properties of Anatase TiO2[J]. Sci China,2011,41(1):66−70.
    [15] XIE C, YAG S H, LI B B, WANG H K, SHI J W, LI G D, NIU C M. C-doped mesoporous anatase TiO2 comprising 10 nm crystallites[J]. J Colloid Interface Sci,2016,1(80):1−8.
    [16] LI H R, LIANG L R, CHENG S, CHENG X W. Preparation, characterization and properties of Zr-TiO2 photocatalyst[J]. New Chem Mater,2016,44(8):172−174.
    [17] WANG S Q, LIU M Z, SUN L L, CHENG W L. Study on the mechanism of desulfurization and denitrification catalyzed by TiO2 in the combustion with biomass and coal[J]. Korean J Chem Eng,2017,34(6):1882−1888. doi: 10.1007/s11814-017-0051-z
    [18] LU L M, KONG C H, VEENA S, HARRIS D. Char Structural ordering during pyrolysis and combustion and its influence on char reactivity[J]. Fuel,2002,81(9):1215−1225. doi: 10.1016/S0016-2361(02)00035-2
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  50
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 修回日期:  2021-02-02
  • 网络出版日期:  2021-05-27
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回