留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

棒状γ-氧化铝/火山岩基多孔材料的制备及刚果红吸附性能初探

季洪海 凌凤香 王鹏 隋宝宽 王少军 袁胜华

季洪海, 凌凤香, 王鹏, 隋宝宽, 王少军, 袁胜华. 棒状γ-氧化铝/火山岩基多孔材料的制备及刚果红吸附性能初探[J]. 燃料化学学报(中英文), 2021, 49(7): 1049-1056. doi: 10.1016/S1872-5813(21)60107-X
引用本文: 季洪海, 凌凤香, 王鹏, 隋宝宽, 王少军, 袁胜华. 棒状γ-氧化铝/火山岩基多孔材料的制备及刚果红吸附性能初探[J]. 燃料化学学报(中英文), 2021, 49(7): 1049-1056. doi: 10.1016/S1872-5813(21)60107-X
JI Hong-hai, LING Feng-xiang, WANG Peng, SUI Bao-kuan, WANG Shao-jun, YUAN Sheng-hua. Preparation of rod-like γ-alumina/volcanic rock porous material and preliminary study on the adsorption property of Congo red[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1049-1056. doi: 10.1016/S1872-5813(21)60107-X
Citation: JI Hong-hai, LING Feng-xiang, WANG Peng, SUI Bao-kuan, WANG Shao-jun, YUAN Sheng-hua. Preparation of rod-like γ-alumina/volcanic rock porous material and preliminary study on the adsorption property of Congo red[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1049-1056. doi: 10.1016/S1872-5813(21)60107-X

棒状γ-氧化铝/火山岩基多孔材料的制备及刚果红吸附性能初探

doi: 10.1016/S1872-5813(21)60107-X
基金项目: 中国石油化工股份有限公司项目(118011-2)资助
详细信息
    作者简介:

    季洪海:jhhyd@126.com

    通讯作者:

    Tel: +86-411-39699893, E-mail: lingfengxiang.fshy@sinopec.com

  • 中图分类号: O661

Preparation of rod-like γ-alumina/volcanic rock porous material and preliminary study on the adsorption property of Congo red

Funds: The project was supported by China Petroleum & Chemical Corporation, SINOPEC (118011-2)
  • 摘要: 以火山岩为基体材料,硝酸铝、碳酸氢铵为原料,采用原位生长技术,成功制备火山岩孔道中交织生长棒状γ-氧化铝的火山岩基多孔材料,应用XRD、SEM、N2吸附-脱附、TG-DSC等技术表征该材料的结构与性质,并研究其对刚果红的吸附性能。研究表明,硝酸铝溶液通过扩散吸附填充到火山岩基体材料孔道中,焙烧后形成无定型相氧化铝。水热处理及焙烧时,形成的氧化铝依次转变为碱式碳酸铝铵和γ-氧化铝。制备棒状γ-氧化铝/火山岩基多孔材料的最佳反应条件为碳酸氢铵溶液浓度0.8 mol/L,反应温度140 ℃,反应时间4 h。火山岩孔道中堆积的棒状γ-氧化铝晶粒直径为50−150 nm,长度3−10 μm,该多孔材料孔容为0.1 mL/g,比表面积为47 m2/g。当刚果红溶液浓度为500 mg/L,多孔材料投加量为2 g/L时,刚果红脱除率达96%,吸附量为243 mg/g。
  • FIG. 811.  FIG. 811.

    FIG. 811.  FIG. 811.

    图  1  不同碳酸氢铵浓度条件下样品的SEM照片

    Figure  1  SEM images of samples prepared with different concentrations of ammonium bicarbonate

    (a): volcanic rock material; (b): volcanic rock impregnated with aluminum nitrate and calcination; (c): 0.1 mol/L; (d): 0.4 mol/L; (e): 0.8 mol/L; (f): 1.2 mol/L

    图  2  不同反应温度条件下样品的SEM照片

    Figure  2  SEM images of samples prepared by different reaction temperature

    (a): 80 ℃; (b): 100 ℃; (c): 120 ℃; (d): 140 ℃; (e): 160 ℃; (f): 180 ℃

    图  3  不同反应时间条件下样品的SEM照片

    Figure  3  SEM images of samples prepared with different reaction time

    (a): 1 h; (b): 2 h; (c): 4 h; (d): 6 h

    图  4  样品的XRD谱图

    Figure  4  XRD patterns of the samples

    a: volcanic rock material A; b: volcanic rock load alumina B; c: hydrothermal treatment material; d: rod-like γ-alumina/volcanic rock porous material D

    图  5  水热处理干燥物料TG-DSC曲线

    Figure  5  TG-DSC curves of hydrothermal treatment material

    图  6  水热处理干燥未焙烧样品的XRD谱图

    Figure  6  XRD patterns of samples prepared by hydrothermal treatment, dry but not calcination

    a: 1 h; b: 2 h; c: 4 h; d: 6 h; e: 8 h

    图  7  水热处理干燥未焙烧样品的SEM照片

    Figure  7  SEM images of samples prepared by hydrothermal treatment, dry but not calcination

    (a): 1 h; (b): 2 h; (c): 4 h; (d): 6 h; (e): 8 h

    图  8  棒状γ-氧化铝/火山岩基多孔材料形成示意图

    Figure  8  Formation of rod-like γ-alumina/volcanic rock porous material

    图  9  棒状γ-氧化铝/火山岩基多孔材刚果红吸附性能

    Figure  9  Congo red adsorption performance of rod-like γ-alumina/volcanic rock porous material

    (a): effect of adsorption time on the removal rate; (b): effect of adsorbent dosage on the removal rate and adsorption capacity

    图  10  内扩散方程分析

    Figure  10  Intra-particle diffusion model

    表  1  火山岩基体材料及棒状γ-氧化铝/火山岩基多孔材料的孔结构

    Table  1  Pore structure of volcanic rock material and rod-like γ-alumina/volcanic rock porous material

    SampleSpecific surface area /(m2·g−1pore volume /(mL·g−1
    Volcanic rock50.005
    Rod-like γ-alumina/volcanic Rock porous material470.10
    下载: 导出CSV

    表  2  不同反应时间条件下棒状γ-氧化铝/火山岩基多孔材料的孔结构

    Table  2  Pore structure of rod-like γ-alumina/volcanic rock porous materials prepared by different reaction time

    SampleSpecific surface area /(m2·g−1Pore volume /(mL·g−1
    Volcanic rock50.005
    Volcanic rock load with alumina110.01
    1 h170.03
    2 h210.04
    4 h470.10
    6 h510.10
    8 h520.11
    下载: 导出CSV

    表  3  粒子内扩散方程线性分析参数

    Table  3  Intra-particle diffusion model kinetic constants

    kt1/(mg·g−1·min1/2kt2/(mg·g−1·min1/2kt3/(mg·g−1·min1/2I1I2I3$R^{2}_{1} $$ R^{2}_{2} $$ R^{2}_{3} $
    55.210.22.349.4156.2223.30.9840.8500.993
    下载: 导出CSV
  • [1] JING X, TETSUO Y, JAE-MIN O. Synthesis of a mesoporous Mg-Al-mixed metal oxide with P123 template for effective removal of Congo red via aggregation-driven adsorption[J]. J Solid State Chem,2021,293:121758. doi: 10.1016/j.jssc.2020.121758
    [2] FATEMEH R, HOSSEIN A, MORTEZA A, GHODRATOLLAH A. Introducing Ag2O-Ag2CO3/rGO nanoadsorbents for enhancingphotocatalytic degradation rate and efficiency of Congo red through surface adsorption[J]. Colloid Surface A,2021,613:126068. doi: 10.1016/j.colsurfa.2020.126068
    [3] ANUJ K P, MONOJ K M. Development of CTAB modified ternary phase α-Fe2O3-Mn2O3-Mn3O4 nanocomposite as innovative super-adsorbent for Congo red dye adsorption[J]. J Environ Chem Eng,2021,9:104827. doi: 10.1016/j.jece.2020.104827
    [4] CAO X Q, WANG X, CHEN M, XIAO F, HUANG Y M, LYU X J. Synthesis of nanoscale zeolitic imidazolate framework-8 (ZIF-8) using reverse micro-emulsion for Congo red adsorption[J]. Sep Purif Technol,2021,260:118062. doi: 10.1016/j.seppur.2020.118062
    [5] CHEN X, LEI X F, ZHENG H, JIANG X, ZHANG B L, ZHANG H P, LU C, ZHANG Q Y. Facile one-step synthesis of magnetic zeolitic Imidazolate framework forultra fast removal of Congo red from water[J]. Microporous Mesoporous Mater,2021,311:110721.
    [6] PEYMAN K, AHMAD R, HADI S. Efficient removal of congo red dye using Fe3O4/NiO nanocomposite: Synthesis and characterization[J]. Environ Technol Innovation,2021,23:101559. doi: 10.1016/j.eti.2021.101559
    [7] GAURAV S, TAHANI S A, KUMAR P S, SANGEETA B, AMIT K, SHWETA S, NAUSHAD M, ZEID A A, FLORIAN J S. Utilization of Ag2O-Al2O3-ZrO2 decorated onto rGO as adsorbent for the removal of Congo red from aqueous solution[J]. Environ Res,2021,197:111179. doi: 10.1016/j.envres.2021.111179
    [8] 柴正泽, 叶俊伟, 田其哲, 史磊, 宁桂玲. 气溶胶辅助法合成球形氧化镁及其吸附性能研究[J]. 无机盐工业,2020,52(1):39−43. doi: 10.11962/1006-4990.2019-0159

    CHAI Zheng-ze, YE Jun-wei, TIAN Qi-zhe, SHI Lei, NING Gui-ling. Aerosol-assisted synthesis of spherical magnesium oxide and its adsorption properties[J]. Inorg Chem Ind,2020,52(1):39−43. doi: 10.11962/1006-4990.2019-0159
    [9] 郭小蕊, 权婷婷, 谢天翼, 孟范成. 分级结构γ-AlOOH的无模板水热制备及其吸附性能[J]. 硅酸盐通报,2017,36(4):1175−1179.

    GUO Xiao-rui, QUAN Ting-ting, XIE Tian-yi, MENG Fan-cheng. Synthesis of Hierarchical γ-AlOOH via template-free hydrothermal method and its adsorption performance[J]. Bull Chin Ceram Soc,2017,36(4):1175−1179.
    [10] 任海深, 田中青, 孟范成. 纳米γ-AlOOH分级结构溶剂热制备及吸附性能研究[J]. 硅酸盐通报,2015,34(1):199−203.

    REN Hai-shen, TIAN Zhong-qing, MENG Fan-cheng. Solvothermal synthesis of hierarchical structures nano γ-AlOOH and its adsorption performance[J]. Bull Chin Ceram Soc,2015,34(1):199−203.
    [11] ZHANG H M, RUAN Y, FENG Y, SU M, DIAO Z H, CHEN D Y, HOU L, LEE P, SHIH K, KONG L J. Solvent-free hydrothermal synthesis of gamma-aluminum oxide nanoparticles with selective adsorption of Congo red[J]. J Colloid Interf Sci,2019,536:180−188. doi: 10.1016/j.jcis.2018.10.054
    [12] LIU X M, NIU C G, ZHEN X P, WANG J D, SU X T. Novel approach for synthesis of boehmite nanostructures and their conversion to aluminum oxide nanostructures for remove Congo red[J]. J Colloid Interf Sci,2015,452:116−125. doi: 10.1016/j.jcis.2015.04.037
    [13] ZHAO S Z, WEN Y F, DU C C, TANG T, KANG D J. Introduction of vacancy capture mechanism into defective alumina microspheres for enhanced adsorption of organic dyes[J]. Chem Eng J,2020,402:126180. doi: 10.1016/j.cej.2020.126180
    [14] CAI W Q, HU Y Z, CHEN J, ZHANG G X, XIA T. Synthesis of nanorods-like mesoporous γ-Al2O3 with enhanced affinity towards Congo red removal: effects of anions and structure-directing agents[J]. Cryst Eng Comm,2012,14:972−977. doi: 10.1039/C1CE05975K
    [15] ZHU P H, TIAN P, LIU Y L, PANG H C, GONG W T, YE J W, NING G L. A template-free method for the synthesis of porous alumina with superhigh specific surface area and large pore volume[J]. Microporous Mesoporous Mater,2020,292:109752. doi: 10.1016/j.micromeso.2019.109752
    [16] 彭炳先, 周爱红. 浮石负载壳聚糖吸附去除水中丙溴磷[J]. 应用化学,2017,34(4):464−470. doi: 10.11944/j.issn.1000-0518.2017.04.160263

    PENG Bing-xian, ZHOU Ai-hong. Adsorptive removal of profenofos from aqueous solution by chitosan/pumice[J]. Chin J Appl Chem,2017,34(4):464−470. doi: 10.11944/j.issn.1000-0518.2017.04.160263
    [17] 王春荣, 胡建龙, 何绪文, 于承豪, 刘晋羽. 改性火山岩处理高铁锰矿井水机理分析[J]. 煤炭科学技术,2013,41(1):121−124.

    WANG Chun-rong, HU Jian-long, HE Xu-wen, YU Cheng-hao, LIU Jin-yu. Mechanism analysis on high iron and manganese content mine water treatment with modified volcanic rocks[J]. Coal Sci Technol,2013,41(1):121−124.
    [18] 王春荣, 于承豪, 孙衍卿, 任欣, 程方琳. 改性火山岩颗粒吸附处理含Cu2+和Zn2+重金属废水影响因素研究[J]. 水处理技术,2013,39(1):73−76. doi: 10.3969/j.issn.1000-3770.2013.01.016

    WANG Chun-rong, YU Cheng-hao, SUN Yan-qing, REN Xin, CHENG Fang-lin. Study on factors of modified lava particles absorption for copper and zinc ions from heavy metal wastewater[J]. Technol Water Treat,2013,39(1):73−76. doi: 10.3969/j.issn.1000-3770.2013.01.016
    [19] 周光红, 向学敏, 周集体. 火山岩对废水中磷的吸附性能及机理研究[J]. 辽宁化工,2011,40(8):805−808. doi: 10.3969/j.issn.1004-0935.2011.08.011

    ZHOU Guang-hong, XIANG Xue-min, ZHOU Ji-ti. Performance and mechanism of phosphorus adsorption on the lava from wastewater[J]. Liaoning Chem Ind,2011,40(8):805−808. doi: 10.3969/j.issn.1004-0935.2011.08.011
    [20] EUNMI I, HO J S, KIM D I, DA I K, DONG C H, GEON D M. Bimodally-porous alumina with tunable mesopore and macropore forefficient organic adsorbents[J]. Chem Eng J,2021,416:129147. doi: 10.1016/j.cej.2021.129147
    [21] 孟范成, 张晓磊, 任海深, 卢思颖, 黄伟九, 洪学鹍. 核桃状3D分级结构γ-AlOOH无模板水热合成及对刚果红吸附性能研究[J]. 人工晶体学报,2014,43(5):1274−1279. doi: 10.3969/j.issn.1000-985X.2014.05.043

    MENG Fan-cheng, ZHANG Xiao-lei, REN Hai-shen, LU Si-wei, HUANG Wei-jiu, HONG Xue-kun. Template-free hydrothermal synthesis of walnut-like 3D hierarchical structures γ-AlOOH and its adsorption performance for Congo red[J]. J Synthetic Cryst,2014,43(5):1274−1279. doi: 10.3969/j.issn.1000-985X.2014.05.043
    [22] PEYMAN K, AHMAD R, HADI S. Efficient removal of congo red dye using Fe3O4/NiO nanocomposite: Synthesis and characterization[J]. Environ Technol Inno, 2021, 23: 101559.
    [23] CHEN X, LEI X F, ZHENG H, JIANG X, ZHANG B L, ZHANG H P, LU C, ZHANG Q Y. Facile one-step synthesis of magnetic zeolitic imidazolate framework for ultra fast removal of Congo red from water[J]. Microporous Mesoporous Mater,2021,311:110712. doi: 10.1016/j.micromeso.2020.110712
    [24] CAI W Q, YU J G, JARONIEC M. Template-free synthesis of hierarchical spindle-like gamma-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water[J]. J Mater Chem,2010,20(22):4587−4594. doi: 10.1039/b924366f
    [25] YU C C, DONG X P, CUO L M, LI J T, QIN F, ZHANG L X, SHI J L, YAN D S. Template-free Preparation of mesoporous Fe2O3 and its application as absorbents[J]. J Phys Chem C,2008,112(35):13378−13382. doi: 10.1021/jp8044466
    [26] WALTER J, WEBER J, ASCE A M, MORRIS J C. Kinetics of adsorption on carbon from solution[J]. J Sanit Eng Div Am Soc Civ Eng,1963,89:31−60.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  110
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 修回日期:  2021-05-08
  • 网络出版日期:  2021-06-07
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回