留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nitrogen-doped porous carbon supported nickel nanoparticles as catalyst for catalytic hydroconversion of high-temperature coal tar

XIE Rui-lun ZHANG Xia TIAN Yu-jiao LEI Zhao CAO En-de

谢瑞伦, 张侠, 田誉娇, 雷昭, 曹恩德. 氮掺杂多孔碳负载镍纳米粒子对高温煤焦油的催化加氢转化[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60156-1
引用本文: 谢瑞伦, 张侠, 田誉娇, 雷昭, 曹恩德. 氮掺杂多孔碳负载镍纳米粒子对高温煤焦油的催化加氢转化[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60156-1
XIE Rui-lun, ZHANG Xia, TIAN Yu-jiao, LEI Zhao, CAO En-de. Nitrogen-doped porous carbon supported nickel nanoparticles as catalyst for catalytic hydroconversion of high-temperature coal tar[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60156-1
Citation: XIE Rui-lun, ZHANG Xia, TIAN Yu-jiao, LEI Zhao, CAO En-de. Nitrogen-doped porous carbon supported nickel nanoparticles as catalyst for catalytic hydroconversion of high-temperature coal tar[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60156-1

氮掺杂多孔碳负载镍纳米粒子对高温煤焦油的催化加氢转化

doi: 10.1016/S1872-5813(21)60156-1
详细信息
  • 中图分类号: TQ529

Nitrogen-doped porous carbon supported nickel nanoparticles as catalyst for catalytic hydroconversion of high-temperature coal tar

Funds: The project was supported by Natural Science Foundation of Anhui Province (1708085QB33) and Key Program for International S&T Cooperation Projects of China ( 2017YFE0124300).
More Information
  • 摘要: 通过对生长在石墨相氮化碳两侧的镍基沸石咪唑酸盐骨架材料进行热分解,制备了一种新型的高活性氮掺杂多孔碳负载的镍基催化剂Ni@N-PC,并将其用于高温煤焦油异丙醇超声萃取物的催化加氢转化。催化剂的镍纳米颗粒主要包裹在碳纳米管的顶端,部分分散在碳纳米薄片表面。以1-萘酚为模型化合物,考察了催化剂在不同反应条件下的催化加氢转化活性,揭示了其催化反应机理。并利用GC/MS分析了高温煤焦油异丙醇超声萃取物及其加氢转化产物。结果表明,1-萘酚在120 °C反应2h有70%转化,在200 °C反应2h后完全转化,高温煤焦油异丙醇超声萃取物经加氢后得到大幅改质。高温煤焦油异丙醇超声萃取物中共检测到180种有机物,其中,含氮有机物33种,含硫有机物11种,含氧化合物39种,而经加氢转化后的产物中未检测到含氧、氮、硫等杂原子化合物,说明催化剂Ni@N-PC具有良好的去除杂原子的性能。经加氢后所有的烯烃、环烯和炔烃饱和,大部分芳烃转化为环烷烃,说明催化剂Ni@N-PC具有较高的催化加氢活性。
  • Figure  1  Schematic illustration of the Ni@N-PC preparation

    Figure  2  SEM images ((a)-(c)), HRTEM images ((d)-(f)) and eds mappings ((g)-(j)) of Ni@N-PC

    Figure  3  XRD pattern of Ni@N-PC

    Figure  4  (a) General XPS spectra, (b) high-resolution C 1s spectra, (c) high-resolution N 1s spectra and (d) high-resolution Ni 2p of Ni@N-PC

    Figure  5  (a) N2 adsorption-desorption isotherm and (b) pore size distribution of Ni@N-PC

    Figure  6  NH3-TPD profile of Ni@N-PC

    Figure  7  Effects of temperature and time on the catalytic hydroconversion of naphthalen-1-ol over Ni@N-PC

    Figure  8  Proposed pathways for the formation of H···H and H+ over Ni@N-PC

    Figure  9  Possible pathways for the catalytic hydroconversion of naphthalen-1-ol over Ni@N-PC

    Figure  10  XRD pattern of Ni@N-PC after catalytic hydroconversion of ISPHTCT

    Figure  11  (a) General XPS spectra, (b) high-resolution C 1s spectra, (c) high-resolution N 1s spectra and (d) high-resolution Ni 2p of Ni@N-PC after catalytic hydroconversion of ISPHTCT

  • [1] FAN X Y, LI D, DAN Y, DONG H, GUO Q, ZHENG H A, LI W H. Kinetic parameter calculation and trickle bed reactor simulation based on pilot-scale hydrodesulfurization test of high-temperature coal tar[J]. ACS Omega,2020,5(22):12923−12936. doi: 10.1021/acsomega.0c00683
    [2] XU X, LI A, ZHANG T, ZHANG L Z, XU D M, GAO J, WANG Y L. Efficient extraction of phenol from low-temperature coal tar model oil via imidazolium-based ionic liquid and mechanism analysis[J]. J Mol Liq,2020,306:1−6.
    [3] ZHANG L Z, XU D M, GAO J, ZHOU S X, ZHAO L W, ZHANG Z S. Extraction and mechanism for the separation of neutral N-compounds from coal tar by ionic liquids[J]. Fuel,2017,194:27−35. doi: 10.1016/j.fuel.2016.12.095
    [4] SUN Z H, LI D, MA H X, TIAN P P, LI X K, LI W H, ZHU Y H. Characterization of asphaltene isolated from low-temperature coal tar[J]. Fuel Process Technol,2015,138:413−418. doi: 10.1016/j.fuproc.2015.05.008
    [5] SUN Z H, WU Y, ZHENG M Y, LI W H. Investigation on asphaltene compositions and structures during hydroprocessing of low-temperature coal tar at different reaction temperatures on Ni-Mo-W/γ-Al2O3 catalysts[J]. React Kinet Mech Catal,2020,129(1):443−456. doi: 10.1007/s11144-019-01715-5
    [6] LI D, LIU X, SUN Z H, TIAN P P, LI W H. Characterization of toluene insolubles from low-Temperature coal tar[J]. Energy Technol,2014,2(2):548−555.
    [7] HU S H, XUE M W, CHEN H, SHEN J Y. The effect of surface acidic and basic properties on the hydrogenation of aromatic rings over the supported nickel catalysts[J]. Chem Eng J,2010,162(1):371−379. doi: 10.1016/j.cej.2010.05.019
    [8] ZHANG Y Y, WEI X Y, LV J H, ZONG Z M. Catalytic hydroconversion of a high-temperature coal tar over two attapulgite powder-supported nickel catalysts[J]. Energy Fuels,2020,34(2):1288−1296. doi: 10.1021/acs.energyfuels.9b03055
    [9] CHU R Z, WANG J, MENG X L, YU S, ZHANG G F, WANG M L, LI X, WU G G, BAI L. Molecular simulation of hydrodesulfurization of coal tar using Pd/ZSM‐5/γ‐Al2O3 catalyst[J]. Asia-Pac J Chem Eng,2019,14(3):1−11.
    [10] PINILLA J L, GARCÍA A B, PHILIPPOT K, LARA P, GARCÍA-SUÁREZ E J, MILLAN M. Carbon-supported Pd nanoparticles as catalysts for anthracene hydrogenation[J]. Fuel,2014,116:729−735. doi: 10.1016/j.fuel.2013.08.067
    [11] HE T, WANG Y X, MIAO P J, LI J Q, WU J H, FAGN Y M. Hydrogenation of naphthalene over noble metal supported on mesoporous zeolite in the absence and presence of sulfur[J]. Fuel,2013,106:365−371. doi: 10.1016/j.fuel.2012.12.025
    [12] YAZU K, SHARMA A. Hydrodesulfurization of coal tar pitch using Pt/Al2O3 and Pd/Al2O3 catalysts under mild conditions[J]. Carbon Res Convers,2019,2(3):213−216. doi: 10.1016/j.crcon.2019.11.002
    [13] CUI X, WU T, GAO J P, TANG W, YANG F L, ZHU B A, WANG Z. Mechanism for catalytic cracking of coal tar over fresh and reduced LaNi1-xFexO3 perovskite[J]. Fuel,2021,288:1−10.
    [14] WEI B Y, YANG H, HU H Q, WANG D C, JIN L J. Enhanced production of light tar from integrated process of in-situ catalytic upgrading lignite tar and methane dry reforming over Ni/mesoporous Y[J]. Fuel,2020,279:1−12.
    [15] CUI W G, LI W H, GAO R, MA H X, LI D, NIU M L, LEI X. Hydroprocessing of low-temperature coal tar for the production of clean fuel over fluorinated NiW/Al2O3-SiO2 catalyst[J]. Energy Fuels,2017,31(4):3768−3783. doi: 10.1021/acs.energyfuels.6b03390
    [16] QI S C, ZHANG L, WEI X Y, HAYASHI J I, ZONG Z M, GUO L L. Deep hydrogenation of coal tar over a Ni/ZSM-5 catalyst[J]. RSC Adv,2014,4(33):17105−17109. doi: 10.1039/c3ra47701k
    [17] ZHANG H Y, CHEN G W, BAI L, CHANG N, WANG Y G. Selective hydrogenation of aromatics in coal-derived liquids over novel NiW and NiMo carbide catalysts[J]. Fuel,2019,244:359−365. doi: 10.1016/j.fuel.2019.02.015
    [18] TONG R L, WANG Y G, ZHANG X, ZHANG H Y, DAI J Z, LIN X C, XU D P. Effect of phosphorus modification on the catalytic properties of NiW/γ-Al2O3 in the hydrogenation of aromatics from coal tar[J]. J Fuel Chem Technol,2015,43(12):1461−1469. doi: 10.1016/S1872-5813(16)30003-2
    [19] KAN T, WANG H Y, HE H X, LI C S, ZHANG S J. Experimental study on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean liquid fuels[J]. Fuel,2011,90(11):3404−3409. doi: 10.1016/j.fuel.2011.06.012
    [20] XU D, XIONG Y Q, YE J D, SU Y H, DONG Q, ZHANG S P. Performances of syngas production and deposited coke regulation during co-gasification of biomass and plastic wastes over Ni/γ-Al2O3 catalyst: Role of biomass to plastic ratio in feedstock[J]. Chem Eng J,2020,392:1−13.
    [21] FAN R Y, HU Z, CHEN C, ZHU X G, ZHANG H M, ZHANG Y X, ZHAO H J, WANG G Z. Highly dispersed nickel anchored on a N-doped carbon molecular sieve derived from metal-organic frameworks for efficient hydrodeoxygenation in the aqueous phase[J]. Chem Commun,2020,56(49):6696−6699. doi: 10.1039/D0CC02620D
    [22] ZHANG S P, YIN H X, WANG J X, ZHU S G, XIONG Y Q. Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts[J]. Energy,2021,216:1−10.
    [23] JABBOUR K, HASSAN N E, DAVIDSON A, MASSIANI P, CASALE S. Characterizations and performances of Ni/diatomite catalysts for dry reforming of methane[J]. Chem Eng J,2015,264:351−358. doi: 10.1016/j.cej.2014.11.109
    [24] LIU L J, LOU H, CHEN M. Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over Ni/CNTs and bimetallic Cu-Ni/CNTs catalysts[J]. Int Hydrogen Energy,2016,41(33):14721−14731. doi: 10.1016/j.ijhydene.2016.05.188
    [25] TANG F Y, WANG L Q, WALLE M D, MUSTAPHA A, LIU Y N. An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural[J]. J Catal,2020,383:172−180. doi: 10.1016/j.jcat.2020.01.019
    [26] HERRERA C, BARRIENTOS L, ROSENKRANZ A, SEPULVEDA C, GARCÍA-FIERRO J L, LAGUNA-BERCERO M A, ESCALONA N. Tuning amphiphilic properties of Ni/Carbon nanotubes functionalized catalysts and their effect as emulsion stabilizer for biomass-derived furfural upgrading[J]. Fuel,2020,276:1−13.
    [27] TERMVIDCHAKORN C, FAUNGNAWAKIJ K, KUBOON S, BUTBUREE T, SANO N, CHARINPANITKUL T. A novel catalyst of Ni hybridized with single-walled carbon nanohorns for converting methyl levulinate to γ-valerolactone[J]. Appl Surf Sci,2019,474:161−168. doi: 10.1016/j.apsusc.2018.04.054
    [28] SUN Y F, LI C S, ZHANG A M. Preparation of Ni/CNTs catalyst with high reducibility and their superior catalytic performance in benzene hydrogenation[J]. Appl Catal A: Gen,2016,522:180−187. doi: 10.1016/j.apcata.2016.05.011
    [29] QU Y M, XU G D, YANG J H, ZHANG Z S. Reduction of aromatic nitro compounds over Ni nanoparticles confined in CNTs[J]. Appl Catal A: Gen,2020,590:1−6.
    [30] WANG R W, YAN T T, HAN L P, CHEN G R, LI H R, ZHANG J P, SHI L Y, ZHANG D S. Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metal-organic frameworks for enhanced electrocatalytic oxygen reduction[J]. J Mater Chem A,2018,6(14):5752−5761. doi: 10.1039/C8TA00439K
    [31] LI M S, WANG X D, LI S R, WANG S P, MA X B. Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds[J]. Int J Hydrogen Energy,2010,35(13):6699−6708. doi: 10.1016/j.ijhydene.2010.04.105
    [32] XIE R L, ZONG Z M, LIU F J, WANG Y G, YAN H L, WEI Z H, MAYYAS M, WEI X Y. Nitrogen-doped porous carbon foams prepared from mesophase pitch through graphitic carbon nitride nanosheet templates[J]. RSC Adv,2015,5(57):45718−45724. doi: 10.1039/C4RA14513E
    [33] MA T Y, DAI S, JARONIEC M, QIAN S Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts[J]. Angew Chem Int Ed,2014,53(24):7281−7285.
    [34] WANG F, FENG T, JIN X J, ZHOU Y L, XU Y J, GAO Y H, LI H S, LEI J F. Atomic Co/Ni active sites assisted MOF-derived rich nitrogen-doped carbon hollow nanocages for enhanced lithium storage[J]. Chem Eng J, 2021, 420: 127583.
    [35] LIU Y, LI Q Y, GUO X, KONG X D, KE J W, CHI M F, LI Q X, GENG Z G, ZENG J. A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction[J]. Adv Mater,2020,32(24):1907690. doi: 10.1002/adma.201907690
    [36] YANG Z, WEI X Y, ZHANG M, ZONG Z M. Catalytic hydroconversion of aryl ethers over a nickel catalyst supported on acid-modified zeolite 5A[J]. Fuel Process Technol,2018,177:345−352. doi: 10.1016/j.fuproc.2018.04.017
  • 加载中
图(11)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 修回日期:  2021-04-20
  • 网络出版日期:  2021-09-08

目录

    /

    返回文章
    返回