自修复聚乙烯醇/细菌纤维素水凝胶电解质制备及应用

Preparation and application of self-healing polyvinyl alcohol/bacterial cellulose hydrogel electrolyte

  • 摘要: 以聚乙烯醇(PVA)、细菌纤维素(BC)和硫酸为原料,采用物理交联的冻融循环法制备了聚乙烯醇/细菌纤维素复合水凝胶电解质;经过冻融循环后,聚乙烯醇和细菌纤维素形成了大量的分子间氢键,赋予复合水凝胶良好的自修复性能和力学性能。探讨了纤维素含量对水凝胶电解质力学性能和离子电导率的影响,结果表明,BC含量为0.6%时复合水凝胶自修复性能最好,力学性能最强,断裂强度高达0.41 MPa,离子电导率最高达到138.9 mS/cm,一次修复后离子电导率仍然可达84.1 mS/cm ,修复率高达74%。在该自修复聚乙烯醇/细菌纤维素水凝胶电解质表面原位聚合聚苯胺电极,设计组装柔性一体化超级电容器,研究了苯胺浓度对超级电容器性能的影响。结果表明,苯胺浓度为0.2 mol/L时,超级电容器器件在0.2 mA/cm2的电流密度下达到580.8 mF/cm2的高比电容、出色的能量密度(20.17 μW·h/cm2)和功率密度(50 μW/cm2),且一次修复后的电容保持率达到66%,显示出良好的自修复性能,以及保持结构完整性和电化学稳定性的巨大潜力。这些发现表明了自修复聚乙烯醇/细菌纤维素复合水凝胶电解质在柔性可穿戴储能装置中巨大的应用前景。

     

    Abstract: Polyvinyl alcohol (PVA), bacterial cellulose (BC) and sulfuric acid were used as raw materials to prepare PVA/BC composite hydrogel electrolyte (CHEPVA/BC) by physical cross-linking freezing-thawing cycle method. After freeze-thaw cycles, PVA and BC form a large number of intermolecular hydrogen bonds, which endow the composite hydrogel with good self-healing property (SHP) and mechanical properties (MPs). The effect of BC content (BCC) on MPs and ionic conductivity (IC) of CHEPVA/BC were discussed. The results show that the composite hydrogel with BCC of 0.6% has the best SHPs and MPs, with breaking strength and IC as high as 0.41 MPa and 138.9 mS/cm, respectively. After the first healing cycle (FHC), IC and healing rate still reach 84.1 mS/cm and 74%, respectively. Polyaniline electrode was polymerized in-situ on the surface of the self-healing CHEPVA/BC, and a flexible all-in-one supercapacitor was designed and assembled. The results show that when aniline concentration is 0.2 mol/L, the supercapacitor device achieves high specific capacitance (580.8 mF/cm2), excellent energy density (20.17 μW·h/cm2) and power density (50 μW/cm2) at current density of 0.2 mA/cm2, and the capacitance retention rate after the FHC reaches 66%, showing good self-healing performance and great potential to maintain mechanical integrity and electrochemical stability. These findings indicate that the self-healing CHEPVA/BC has great application prospects in flexible wearable energy storage devices.

     

/

返回文章
返回